
MCS2

PROGRAMMER’S GUIDE

www.smaract.com

Copyright © 2019 SmarAct GmbH

Specifications are subject to change without notice. All rights reserved. Reproduction of images,

tables or diagrams prohibited.

The information given in this document was carefully checked by our team and is constantly up-

dated. Nevertheless, it is not possible to fully exclude the presence of errors. In order to always

get the latest information, please contact our technical sales team.

SmarAct GmbH, Schuette-Lanz-Strasse 9, D-26135 Oldenburg

Phone: +49 (0) 441 - 800879-0, Telefax: +49 (0) 441 - 800879-21

Internet: www.smaract.com, E-Mail: info@smaract.com

Document Version: 1.1.0

2MCS2 Programmer’s Guide

TABLE OF CONTENTS

1 Introduction ... 10

1.1 Terminologies ... 10

2 General Concepts .. 12

2.1 Connecting and Disconnecting... 12

2.1.1 Locators for Device Identification... 12

2.1.2 Finding Devices ... 13

2.1.3 Device Enumeration Options .. 14

2.1.4 Network Interface Configuration.. 15

2.2 Properties.. 16

2.3 Accessing Properties.. 17

2.3.1 Synchronous Access... 17

2.3.2 Asynchronous Access... 18

2.3.3 High-Throughput Asynchronous Access.. 20

2.3.4 Call-and-Forget Mechanism .. 22

2.3.5 Request Ready Notification... 23

2.4 Event Notifications ... 24

2.5 Module Overview ... 25

2.5.1 USB Interface .. 25

2.5.2 Ethernet Interface .. 26

2.5.3 Stick-Slip Piezo Driver... 26

2.5.4 Magnetic Driver .. 26

2.6 Positioner Types ... 27

2.6.1 Manual Positioner Type Configuration .. 28

2.6.2 Automatic Positioner Type Configuration ... 28

2.6.3 Custom Positioner Types... 28

2.7 Moving Positioners... 29

2.7.1 Calibrating ... 30

2.7.2 Referencing ... 32

2.7.3 Open-Loop Movements... 33

2.7.4 Closed-Loop Movements... 34

2.7.5 Stopping Movements ... 38

2.7.6 Overwriting Movement Commands... 38

2.7.7 Movement Feedback.. 39

2.8 Defining Positions .. 42

2.8.1 Reference Marks... 43

2.8.2 Positioners With Single Reference Marks.. 44

2.8.3 Positioners With Multiple Reference Marks .. 46

2.8.4 Positioners With Endstop Reference.. 48

2.8.5 Shifting the Measuring Scale... 49

3MCS2 Programmer’s Guide

TABLE OF CONTENTS

2.9 Device Monitoring .. 50

2.9.1 Movement Monitoring ... 50

2.9.2 Magnetic Driver Overload Protection .. 50

2.9.3 Hardware Monitoring... 51

2.10 State Flags ... 52

2.10.1 Device State Flags ... 52

2.10.2 Module State Flags ... 53

2.10.3 Channel State Flags .. 55

2.11 Sensor Power Modes ... 59

2.12 PicoScale Sensor Module .. 60

2.13 Endstop Detection.. 61

2.14 Following Error Detection.. 62

2.15 Software Range Limit ... 63

2.16 Stop Broadcasting .. 65

2.16.1 Stop Broadcast Configuration... 65

2.17 Command Groups.. 66

2.17.1 Command Groups vs. Output Buffer... 68

2.18 Trajectory Streaming.. 69

2.18.1 General Streaming Concept .. 69

2.18.2 Basic Approach ... 71

2.18.3 Options .. 72

2.18.4 Trigger Modes ... 72

2.18.5 Stream Events ... 74

2.18.6 Maximum Stream Rates .. 75

2.19 Auxiliary Inputs and Outputs .. 75

2.19.1 Digital Device Input .. 76

2.19.2 Fast Digital Outputs.. 76

2.19.3 General Purpose Digital Inputs/Outputs ... 76

2.19.4 Fast Analog Inputs.. 78

2.19.5 Using Analog Inputs as Control-Loop Feedback... 79

2.19.6 Analog Outputs... 81

2.20 Input Trigger.. 81

2.20.1 Disabled Mode.. 82

2.20.2 Emergency Stop Mode... 82

2.20.3 Stream Sync Mode.. 83

2.20.4 Command Group Sync Mode.. 84

2.20.5 Event Trigger Mode .. 85

2.21 Output Trigger .. 86

2.21.1 Constant Mode ... 87

2.21.2 Position Compare Mode.. 87

2.21.3 Target Reached Mode .. 91

2.21.4 Actively Moving Mode .. 92

2.22 Phasing of Magnetic Driven Positioners.. 92

2.23 Feature Permissions .. 93

3 Function Reference... 94

3.1 Function Summary... 94

4MCS2 Programmer’s Guide

TABLE OF CONTENTS

3.2 Detailed Function Description .. 97

3.2.1 SA_CTL_GetFullVersionString .. 97

3.2.2 SA_CTL_GetResultInfo .. 98

3.2.3 SA_CTL_GetEventInfo ... 99

3.2.4 SA_CTL_FindDevices ... 100

3.2.5 SA_CTL_Open .. 102

3.2.6 SA_CTL_Close .. 103

3.2.7 SA_CTL_Cancel .. 104

3.2.8 SA_CTL_GetProperty_i32.. 105

3.2.9 SA_CTL_SetProperty_i32 .. 107

3.2.10 SA_CTL_SetPropertyArray_i32 ... 108

3.2.11 SA_CTL_GetProperty_i64.. 109

3.2.12 SA_CTL_SetProperty_i64 .. 110

3.2.13 SA_CTL_SetPropertyArray_i64 ... 111

3.2.14 SA_CTL_GetProperty_s ... 112

3.2.15 SA_CTL_SetProperty_s.. 114

3.2.16 SA_CTL_RequestReadProperty.. 115

3.2.17 SA_CTL_ReadProperty_i32 ... 117

3.2.18 SA_CTL_ReadProperty_i64 ... 118

3.2.19 SA_CTL_ReadProperty_s .. 119

3.2.20 SA_CTL_RequestWriteProperty_i32 .. 121

3.2.21 SA_CTL_RequestWriteProperty_i64 .. 123

3.2.22 SA_CTL_RequestWriteProperty_s.. 124

3.2.23 SA_CTL_RequestWritePropertyArray_i32... 125

3.2.24 SA_CTL_RequestWritePropertyArray_i64... 126

3.2.25 SA_CTL_WaitForWrite ... 127

3.2.26 SA_CTL_CancelRequest .. 128

3.2.27 SA_CTL_CreateOutputBuffer ... 129

3.2.28 SA_CTL_FlushOutputBuffer ... 130

3.2.29 SA_CTL_CancelOutputBuffer... 131

3.2.30 SA_CTL_OpenCommandGroup... 132

3.2.31 SA_CTL_CloseCommandGroup ... 133

3.2.32 SA_CTL_CancelCommandGroup... 134

3.2.33 SA_CTL_WaitForEvent... 135

3.2.34 SA_CTL_Calibrate .. 137

3.2.35 SA_CTL_Reference .. 139

3.2.36 SA_CTL_Move .. 141

3.2.37 SA_CTL_Stop.. 143

3.2.38 SA_CTL_OpenStream.. 144

3.2.39 SA_CTL_StreamFrame .. 146

3.2.40 SA_CTL_CloseStream.. 148

3.2.41 SA_CTL_AbortStream.. 150

4 Property Reference... 151

4.1 Property Introduction .. 151

4.2 Property Summary... 152

4.3 Device Properties ... 157

4.3.1 Number of Channels.. 157

5MCS2 Programmer’s Guide

TABLE OF CONTENTS

4.3.2 Number of Bus Modules ... 158

4.3.3 Interface Type ... 159

4.3.4 Device State... 160

4.3.5 Device Serial Number .. 161

4.3.6 Device Name ... 162

4.3.7 Emergency Stop Mode... 163

4.3.8 Network Discover Mode .. 164

4.3.9 Network DHCP Timeout... 166

4.4 Module Properties.. 168

4.4.1 Power Supply Enabled ... 168

4.4.2 Number of Bus Module Channels .. 169

4.4.3 Module Type.. 170

4.4.4 Module State... 171

4.5 Positioner Properties ... 172

4.5.1 Startup Options .. 172

4.5.2 Amplifier Enabled ... 174

4.5.3 Amplifier Mode ... 176

4.5.4 Positioner Control Options.. 178

4.5.5 Actuator Mode .. 180

4.5.6 Control Loop Input ... 182

4.5.7 Sensor Input Select .. 184

4.5.8 Positioner Type ... 186

4.5.9 Positioner Type Name.. 188

4.5.10 Move Mode.. 189

4.5.11 Channel Type .. 191

4.5.12 Channel State.. 192

4.5.13 Position .. 193

4.5.14 Target Position .. 195

4.5.15 Scan Position... 196

4.5.16 Scan Velocity ... 197

4.5.17 Hold Time .. 198

4.5.18 Move Velocity .. 200

4.5.19 Move Acceleration .. 202

4.5.20 Max Closed Loop Frequency ... 204

4.5.21 Default Max Closed Loop Frequency ... 205

4.5.22 Step Frequency ... 206

4.5.23 Step Amplitude ... 207

4.5.24 Following Error.. 208

4.5.25 Following Error Limit .. 209

4.5.26 Broadcast Stop Options... 210

4.5.27 Sensor Power Mode ... 211

4.5.28 Sensor Power Save Delay .. 213

4.5.29 Position Mean Shift .. 215

4.5.30 Safe Direction.. 216

4.5.31 Control Loop Input Sensor Value.. 218

4.5.32 Control Loop Input Aux Value... 219

4.5.33 Target To Zero Voltage Hold Threshold.. 220

6MCS2 Programmer’s Guide

TABLE OF CONTENTS

4.6 Scale Properties.. 222

4.6.1 Logical Scale Offset .. 222

4.6.2 Logical Scale Inversion... 223

4.6.3 Range Limit Min .. 225

4.6.4 Range Limit Max ... 226

4.6.5 Default Range Limit Min .. 227

4.6.6 Default Range Limit Max ... 228

4.7 Calibration Properties.. 229

4.7.1 Calibration Options .. 229

4.7.2 Signal Correction Options.. 231

4.8 Referencing Properties .. 233

4.8.1 Referencing Options .. 233

4.8.2 Distance To Reference Mark ... 235

4.8.3 Distance Code Inverted ... 236

4.9 Tuning and Customizing Properties... 237

4.9.1 Positioner Movement Type ... 237

4.9.2 Positioner Is Custom Type... 239

4.9.3 Positioner Base Unit... 240

4.9.4 Positioner Base Resolution ... 242

4.9.5 Positioner Sensor Head Type.. 244

4.9.6 Positioner Reference Type... 245

4.9.7 Positioner P Gain .. 247

4.9.8 Positioner I Gain ... 248

4.9.9 Positioner D Gain.. 249

4.9.10 Positioner PID Shift .. 250

4.9.11 Positioner Anti Windup.. 252

4.9.12 Positioner ESD Distance Threshold.. 254

4.9.13 Positioner ESD Counter Threshold... 256

4.9.14 Positioner Target Reached Threshold .. 257

4.9.15 Positioner Target Hold Threshold... 258

4.9.16 Save Positioner Type.. 260

4.9.17 Positioner Write Protection ... 261

4.10 Streaming Properties ... 262

4.10.1 Stream Base Rate ... 262

4.10.2 Stream External Sync Rate .. 263

4.10.3 Stream Options... 265

4.10.4 Stream Load Maximum ... 266

4.11 Diagnostic Properties... 267

4.11.1 Channel Error.. 267

4.11.2 Channel Temperature .. 269

4.11.3 Bus Module Temperature.. 270

4.11.4 Positioner Fault Reason... 271

4.11.5 Motor Load.. 273

4.12 Auxiliary Properties.. 274

4.12.1 Aux Positioner Type ... 274

4.12.2 Aux Positioner Type Name.. 276

4.12.3 Aux Input Select .. 277

4.12.4 Aux I/O Module Input Index .. 278

7MCS2 Programmer’s Guide

TABLE OF CONTENTS

4.12.5 Aux Direction Inversion ... 280

4.12.6 Aux I/O Module Input0 / Input1 Value ... 282

4.12.7 Aux Digital Input Value... 284

4.12.8 Aux Digital Output Value / Set / Clear .. 285

4.12.9 Aux Analog Output Value0 / Value1 ... 287

4.13 I/O Module Properties ... 289

4.13.1 I/O Module Options.. 289

4.13.2 I/O Module Voltage... 291

4.13.3 I/O Module Analog Input Range ... 292

4.14 Input Trigger Properties .. 294

4.14.1 Device Input Trigger Mode .. 294

4.14.2 Device Input Trigger Condition ... 296

4.15 Output Trigger Properties ... 297

4.15.1 Channel Output Trigger Mode .. 297

4.15.2 Channel Output Trigger Polarity... 299

4.15.3 Channel Output Trigger Pulse Width ... 300

4.15.4 Channel Position Compare Start Threshold.. 301

4.15.5 Channel Position Compare Increment... 302

4.15.6 Channel Position Compare Direction... 303

4.15.7 Channel Position Compare Limit Min .. 305

4.15.8 Channel Position Compare Limit Max ... 307

4.16 Hand Control Module Properties ... 309

4.16.1 Hand Control Module Lock Options... 309

4.16.2 Hand Control Module Default Lock Options... 311

4.17 API Properties ... 312

4.17.1 Event Notification Options .. 312

4.17.2 Auto Reconnect... 314

5 Event Reference .. 315

5.1 Event Summary .. 315

5.2 Detailed Event Description.. 317

5.2.1 None... 317

5.2.2 Movement Finished.. 317

5.2.3 Holding Aborted ... 317

5.2.4 Positioner Type Changed... 318

5.2.5 Phasing Finished... 318

5.2.6 Sensor State Changed.. 319

5.2.7 Reference Found .. 319

5.2.8 Following Error Limit .. 320

5.2.9 Sensor Module State Changed ... 320

5.2.10 Over Temperature .. 320

5.2.11 Power Supply Overload ... 321

5.2.12 Power Supply Failure.. 321

5.2.13 Fan Failure State Changed... 322

5.2.14 Adjustment Finished .. 322

5.2.15 Adjustment State Changed ... 322

5.2.16 Adjustment Update .. 323

5.2.17 Stream Finished.. 323

8MCS2 Programmer’s Guide

TABLE OF CONTENTS

5.2.18 Stream Ready.. 324

5.2.19 Stream Triggered .. 324

5.2.20 Command Group Triggered .. 325

5.2.21 Hand Control Module State Changed .. 325

5.2.22 Emergency Stop Triggered .. 326

5.2.23 External Input Triggered .. 326

5.2.24 Request Ready .. 326

5.2.25 Connection Lost.. 327

6 ASCII Interface ... 329

6.1 Connection Setup... 329

6.1.1 Note On Message Termination... 330

6.2 SCPI Basics .. 330

6.2.1 SCPI Conformance Information.. 330

6.2.2 Command Structure... 331

6.2.3 Traversing the Command Tree ... 332

6.2.4 Queries .. 333

6.3 Basic Programming Examples .. 333

6.3.1 Get Property.. 333

6.3.2 Set Property .. 334

6.3.3 Calibrate .. 334

6.3.4 Reference... 334

6.3.5 Move... 334

6.3.6 Stop .. 334

6.3.7 Movement State ... 335

6.3.8 Error Handling... 335

6.4 Using Command Groups... 337

6.4.1 Command Set ... 337

6.4.2 Examples ... 338

6.5 Streaming Trajectories... 340

6.5.1 Command Set ... 340

6.5.2 Example ... 342

6.6 Command Summary.. 343

6.6.1 Common Commands... 343

6.6.2 Movement Commands .. 344

6.6.3 Property Command Tree ... 344

6.7 SCPI Error Codes... 350

A Code Definition Reference .. 351

A.1 Error Codes ... 351

9MCS2 Programmer’s Guide

1 INTRODUCTION

This document describes the application programming interface (API) of the SmarAct MCS2. It may

be used to control one or more MCS2 devices by software.

The MCS2 system supports different command interfaces (e.g. USB or ethernet) and driver mod-

ules to control actuators with different driving principles (e.g. stick-slip piezo actuators or magnetic

driven positioners). Note that different modules have different features and properties. Further-

more, default settings and available options may differ between modules. Detailed information

about the differences is given throughout the document.

While this document mainly serves as a reference when programming your own software it also

supplies some background information for a better understanding of the overall system.

Note that this document provides interactive cross-references for easy navigation. Clicking on

a section reference, function- or property-name refers the reader to the corresponding detailed

description.

1.1 Terminologies

This section defines general terminologies that are used throughout this document. This section

only gives a brief summary and the terminologies are explained in more detail later in this docu-

ment.

Closed-Loop Movements are movements where sensor data is used as feedback to control the

position, velocity and/or acceleration of a positioner. To be able to perform closed-loop

movements the targeted positioner obviously must be equipped with an integrated posi-

tion sensor. Furthermore, the sensor must not be disabled. See section 2.7.4 Closed-Loop

Movements.

Open-Loop Movements are movements that do not use sensor data as feedback. The positioner

simply moves according to the given parameters and the exact distance traveled is unde-

fined. Especially, movements in different directions, but otherwise identical parameters, will

typically result in slightly varying traveling distances. See section 2.7.3 Open-Loop Move-

ments.

Calibrating is a process where the controller analyzes the individual characteristics of a positioner

in order to optimize closed-loop behavior. The calibration data is saved to non-volatile mem-

ory. Therefore, the calibration only needs to be performed when the system setup changes,

but not necessarily on each system start-up. See section 2.7.1 Calibrating.

Referencing is a process where the controller moves a positioner to detect its absolute physical

position. After the referencing, points of interest identified in previous sessions may easily

be recalled. See section 2.7.2 Referencing.

10MCS2 Programmer’s Guide

1 INTRODUCTION

Trajectory Streaming allows to move several positioners synchronously along a defined trajec-

tory. See section 2.18 Trajectory Streaming.

Stopped State means the state where the control-loop is disabled and the channel can not ac-

tively hold the current position. The output of the driver does not change when the channel

is in stopped state.

Holding State means the closed-loop state where the control-loop is enabled and the channel

actively holds the current position by continuously updating the driving signals.

Hold Time The hold time of a closed-loop movement specifies how long the positioner will ac-

tively hold its position after reaching the target. This may be useful to compensate drift

effects.

Max Closed-Loop Frequency When performing closed-loop movements with piezo driven posi-

tioners, the control-loop uses the current position and the commanded target position to

generate a driving signal for the piezo actuator taking the control-loop parameters (PID) into

account. The maximum allowed frequency that is generated by the control-loop depends on

the actual positioner as well as the environment. (E.g. HV and UHV requires lower allowed

frequencies.) The max closed-loop frequency defines the upper limit for the generated driv-

ing signal.

Phasing For magnetic driven positioners the controller must know the absolute position of the

slider within a magnetic period. The sequence of establishing a phase reference is known as

"phasing". See section 2.22 Phasing of Magnetic Driven Positioners.

11MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

2.1 Connecting and Disconnecting

Before being able to communicate with a device a connection must be established via a call to

SA_CTL_Open. This function connects to the device specified in the locator parameter (see sec-

tion 2.1.1) and returns a handle to the device, if the call was successful. The returned device han-

dle must be saved within the application and passed as a parameter to the other API functions.

Once the connection is established you can use the other functions to interact with the connected

device. If an application requires to connect to more than one device it must open each device

separately. The API processes all communication independently for each device handle.

A device that has been acquired by an application cannot be acquired by a second application at

the same time. You must close the connection to the device by calling SA_CTL_Close before it is

free to be used by other applications. Not closing a device will cause a resource leak.

If you have threads blocking on functions like SA_CTL_WaitForEvent you may unblock them

for a clean shutdown by calling SA_CTL_Cancel. The SA_CTL_WaitForEvent function will

then return with the error code SA_CTL_ERROR_CANCELED.

NOTICE
Connecting to a device via the ASCII interface uses a differentmechanism. Please

refer to section 6.1 "Connection Setup" for more information.

2.1.1 Locators for Device Identification

Devices are identified with locator strings, similar to URLs used to locate web pages. The following

sections describe the syntax of these locator strings.

USB Device Locator Syntax

Devices with a USB interface can be addressed with one of the following locator syntaxes:

• usb:sn:<serial>

where <serial> is the device serial which is printed on the housing of the device.

Example: usb:sn:MCS2-00000412

12MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

• usb:ix:<n>

where the number <n> selects the nth device in the list of all currently attached devices with

a USB interface.

Example: usb:ix:0

The drawback of identifying a device with this method is that the number and the order of

connected devices may change between sessions, so the index nmay not always refer to the

same device. It is only safe to do this if you have exactly one device connected to the PC.

It is recommended to use the first format for USB devices.

Network Device Locator Syntax

Devices with a network interface are addressed with one of the following locator syntaxes:

• network:sn:<serial>

where <serial> is the device serial which is printed on the housing of the device.

Example: network:sn:MCS2-00000412

• network:<ip>

where <ip> is an IPv4 address which consists of four integer numbers between 0 and 255

separated by a dot.

Example: network:192.168.1.200

NOTICE
Data transmission bandwidth and latencies over networks can vary much more

than over e.g. USB. A program should not rely on low transmission latencies.

2.1.2 Finding Devices

Devices may be connected to by using a specific locator as outlined above. To find devices auto-

matically the function SA_CTL_FindDevices may be used. It will scan the USB ports as well as

the network interfaces and return a list with the locator strings of the found devices.

Note that the Network Discover Mode property (see section 4.3.8) must be configured to active

or passive mode to make it possible to list devices with ethernet interface. Note further that in

case the DHCP mode is enabled a device cannot be found while the DHCP IP address allocation is

running. If no DHCP server is available the interface will fall-back to the static IP settings after the

configured DHCP timeout has expired. (See Network DHCP Timeout property, section 4.3.9). After

that the device can be found again by the discovering but nevertheless a connection may probably

not be established if the static IP settings do not match the users network settings.

13MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

2.1.3 Device Enumeration Options

By specifying the options parameter of the SA_CTL_FindDevices function, the default behav-

ior of the function can be changed. The configuration consists of a number of parameters with

default values, which will be used if they are not specified by the user. Parameters are organized

in multiple lines separated by a newline character (\n). Each parameter line must contain a pa-

rameter with an optional value separated by a space character. Available parameters and their

default values are:

Parameter Default Value Description

iface-type usb, network Select interface types for device discovery. Mul-

tiple values must be specified in separate lines.

Setting this parameter once disables the default

value. Possible values are usb and network.

find-only-available true List only devices which are currently not in use.

Only network devices support discovery while al-

ready in use.

only-locator true Output format is one locator per line. See sec-

tion on extended output format below.

strict true Report unknown parameters as error. When dis-

abled unknown parameters will be ignored.

Extended output format

When disabling the only-locator parameter, the output format switches to an extended for-

mat which contains additional properties for each found device. Each line still contains one de-

vice, but consists of multiple key-value pairs. To enable output of a specific property add the line

include-<property> in the options string, with <property> replaced by the actual prop-

erty name. By specifying the special option include-all all available properties for a device are

returned. Possible properties are:

Parameter Description

locator Device locator

iface-type Interface type

device-sn Device serial number

device-info Device info string

available Device is available

network-host Device IP address

The property key and value are separated by an equal sign (=) and the key-value pairs are sepa-

rated by a pipe character (|). Note that you cannot rely on a specific property order when parsing

the output. Also the list of available properties depends on the interface type. To encode values

with special characters percent-encoding with the following substitutions is used:

14MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Character Replacement

| %7C

\n %0A

= %3D

% %25

Example option settings

Find only USB devices (specifying iface-type once disables the default behavior):

iface-type usb

Possible Output:

usb:sn:MCS2-00000088

Find devices on all interfaces (parameter must be specified multiple times):

iface-type usb

iface-type network

Possible Output:

usb:sn:MCS2-00000088

network:sn:MCS2-00000952

Find all network devices including unavailable ones with extended format output:

iface-type network

find-only-available false

only-locator false

include-locator

include-available

Possible Output:

available=0|locator=network:sn:MCS2-00000685

available=1|locator=network:sn:MCS2-00000952

2.1.4 Network Interface Configuration

While devices with USB interface do not need any interface configuration, the ethernet interface

must be configured with the network parameters: DHCP mode, IP address, subnet mask and

gateway IP address. The MCS2 is delivered with a default IP configuration which may be adjusted

to match the users network settings.

The following table lists the default configuration:

15MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Parameter Default Value

DHCP Mode disabled

IP Address 192.168.1.200

Subnet Mask 255.255.0.0

Gateway IP 192.168.1.1

Pass-Key smaract

The interface may be configured to use DHCP to obtain an IP address from a DHCP-server or to

use a static IP configuration. The configuration may be changed by connecting to the integrated

web server, by using the configuration menu of an MCS2 hand control module or by using the

SmarActNetConfig tool for the PC.

See the MCS2 User Manual document for more details on the configuration.

2.2 Properties

Properties are configuration values that define the behavior of the device. Each property has

a data type and an access mode. Some properties may be read and written, while others are

read only or (in rare cases) write only. See chapter 4 "Property Reference" for a list of available

properties and their descriptions.

Depending on the data type a property has youmust use the corresponding function variant to ac-

cess it. For example, the Number of Channels property is of type I32. Therefore, you must use the

SA_CTL_GetProperty_i32 function to read the property. In contrast the Device Serial Num-

ber property is of type string. Therefore, you must use the SA_CTL_GetProperty_s function to

read the property.

Properties are identified by a property key that must be passed to the function call when accessing

a property. Properties are categorized into device, module and channel properties. Module and

channel properties require an additional index parameter to address a specific module or channel.

Read the Number of Channels and Number of Bus Modules properties to determine the valid

range for the channel andmodule index parameters. Note that the index parameter is zero-based.

In case of device properties the controller is already addressed by the device handle. Therefore,

the index parameter is unused and must be set to zero. For API properties the index parameter is

unused too and must be set to zero.

Most properties are non-persistent which means that modifications do not outlive a power cycle.

At device start-up they have the default value that is specified in the detailed property description.

Other properties are kept persistent in the internal non-volatile memory. Therefore, their values

are preserved and loaded at device start-up.

Note that not all properties are applicable for all interface and driver modules. Refer to the Prop-

erty Reference to determine if a property is valid for a specific module. Reading or writing a prop-

erty which is not available returns a SA_CTL_ERROR_INVALID_KEY error. Read the Interface

Type, Module Type or Channel Type properties to determine the type of the interface, module or

channel.

16MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

2.3 Accessing Properties

Modifying or retrieving property values takes a major role in controlling a device by software.

Therefore, the API offers a variety of functions to get and set property values in order to meet all

requirements an application might have. A straight forward method, though easy to use, is some-

what inefficient, while more complicated methods may greatly improve efficiency. The application

may decide on a per-call basis which method to use, thus being very flexible depending on the

applications context.

The different methods of accessing properties may be categorized by their use case and are de-

scribed in the following sections. The figures illustrate the sequence of actions for getting two

property values. Green boxes indicate non-blocking API calls while red boxes indicate blocking

calls. Setting properties is very similar and is not explicitly discussed.

2.3.1 Synchronous Access

This is the easiest method for accessing properties since it consists of one simple function call

for getting one property value (e.g. SA_CTL_GetProperty_i32). When the function returns the

result is available (see figure 2.1).

Figure 2.1: Synchronous Property Access

When the API function is called a command is sent to the device and the function waits for a reply

from the device before it returns. From the view of the application, the function has a blocking

behavior. Depending on the transmission delays the blocking time may be in the range of several

milli seconds. During this time the user application cannot perform any other tasks. Therefore,

this access method is the slowest of all.

Functions Used

SA_CTL_GetProperty_i32, SA_CTL_SetProperty_i32

17MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Example Read

int32_t value[2];

int8_t channel;

for (channel = 0; channel < 2; channel++) {

SA_CTL_Result_t result = SA_CTL_GetProperty_i32(

dHandle,channel,SA_CTL_PKEY_CHANNEL_STATE,&(value[channel],0)

);

if (result) {

// handle error

}

}

// value[0] and value[1] hold the channel state

Example Write

int32_t value[2] = {SA_CTL_MOVE_MODE_CL_ABSOLUTE,

SA_CTL_MOVE_MODE_CL_RELATIVE};

int8_t channel;

for (channel = 0; channel < 2; channel++) {

SA_CTL_Result_t result = SA_CTL_SetProperty_i32(

dHandle,channel,SA_CTL_PKEY_MOVE_MODE,value[channel]

);

if (result) {

// handle error

}

}

2.3.2 Asynchronous Access

This method requires two function calls for getting one property value. One for requesting the

property value and one for retrieving the answer (see figure 2.2).

When the API function is called a command is sent to the device and the function returns im-

mediately, allowing the application to issue another request (or perform other tasks). When the

application has finished performing other tasks (or cannot proceed until the property values are

available) it may call the API function to receive the result.

The advantage of this method is that the application may request several property values in fast

succession and then perform other tasks before blocking on the reception of the results.

Functions Used

SA_CTL_RequestReadProperty, SA_CTL_ReadProperty_i64,

SA_CTL_RequestWriteProperty_i64, SA_CTL_WaitForWrite

18MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Figure 2.2: Asynchronous Property Access

Example Read

SA_CTL_Result_t result;

int64_t value[2]; // buffer for values to read

SA_CTL_RequestID_t rID[2]; // buffer for request IDs

int8_t channel;

// issue requests for two channels

for (channel = 0; channel < 2; channel++) {

result = SA_CTL_RequestReadProperty(

dHandle,channel,SA_CTL_PKEY_POSITION,&(rID[channel]),0

);

if (result) {

// handle error

}

}

// process other tasks

// ...

// retrieve results

for (channel = 0; channel < 2; channel++) {

result = SA_CTL_ReadProperty_i64(

dHandle,rID[channel],&(value[channel]),0

);

if (result) {

// handle error

}

}

19MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Example Write

SA_CTL_Result_t result;

SA_CTL_RequestID_t rID[2]; // buffer for request IDs

int8_t channel;

// issue requests for two channels (set position to zero)

for (channel = 0; channel < 2; channel++) {

result = SA_CTL_RequestWriteProperty_i64(

dHandle,channel,SA_CTL_PKEY_POSITION,0,&(rID[channel]),0

);

if (result) {

// handle error

}

}

// process other tasks

// ...

// retrieve results

for (channel = 0; channel < 2; channel++) {

result = SA_CTL_WaitForWrite(

dHandle,rID[channel]

);

if (result) {

// handle error

}

}

2.3.3 High-Throughput Asynchronous Access

This method is similar to the asynchronous access with the difference that request commands are

bundled (see figure 2.3).

When the API function is called the request is buffered. The function returns immediately and the

command transmission is held back until the buffer is flushed. Again, the application may request

several property values in fast succession and then perform other tasks before blocking on the

reception of the results. In addition, the underlying media is able to combine several requests into

one packet, thus further optimizing communication delays.

Functions Used

SA_CTL_CreateOutputBuffer, SA_CTL_FlushOutputBuffer,

SA_CTL_RequestReadProperty, SA_CTL_ReadProperty_i64

20MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Figure 2.3: High-Throughput Asynchronous Property Access

Example Read

SA_CTL_Result_t result;

int32_t value[2]; // buffer for values to read

SA_CTL_RequestID_t rID[2]; // buffer for request IDs

int8_t channel;

// create output buffer

SA_CTL_TransmitHandle_t tHandle;

result = SA_CTL_CreateOutputBuffer(dHandle,&tHandle);

if (result) {

// handle error

}

// issue requests for two channels

for (channel = 0; channel < 2; channel++) {

// by passing the transmit handle (instead of zero)

// the request is associated with the output buffer and

// therefore only sent when the buffer is flushed (see below)

result = SA_CTL_RequestReadProperty(

dHandle,channel,SA_CTL_PKEY_POSITION,&(rID[channel]),tHandle

);

if (result) {

// handle error

21MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

}

}

// flush output buffer

SA_CTL_FlushOutputBuffer(dHandle, tHandle);

// process other tasks

// ...

// retrieve results

for (channel = 0;channel < 2; channel++) {

result = SA_CTL_ReadProperty_i64(

dHandle,rID[channel],&(value[channel]),0

);

if (result) {

// handle error

}

}

2.3.4 Call-and-Forget Mechanism

For property writes the result is only used to report errors. With the call-and-forget mechanism

the device does not generate a result for writes and the application can continue processing other

tasks immediately. Compared to asynchronous accesses, the application doesn’t need to keep

track of open requests and collect the results at some point. This mode should be used with care

so that written values are within the valid range.

The call-and-forget mechanism is used by passing a null pointer for the request ID pointer to the

SA_CTL_RequestWriteProperty_x functions.

Functions Used

SA_CTL_RequestWriteProperty_i64

Example Write

SA_CTL_Result_t result;

int8_t channel;

// issue requests for two channels (set position to zero)

for (channel = 0; channel < 2; channel++) {

result = SA_CTL_RequestWriteProperty_i64(

dHandle,channel,SA_CTL_PKEY_POSITION,0,NULL,0

);

if (result) {

// handle error

}

}

22MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

2.3.5 Request Ready Notification

Instead of using the blocking SA_CTL_ReadProperty_x/SA_CTL_WaitForWrite functions to

retrieve the result of an asynchronous request, the event system (see section 2.4 "Event Notifi-

cations") can be used to get a notification once the answer has been received from the device.

After receiving a Request Ready event (see there) the result of the asynchronous operation can be

retrieved without blocking using the functions mentioned above.

Note that the request ready event needs to be enabled using the Event Notification Options prop-

erty.

Example Request

// enable request ready events

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_API_EVENT_NOTIFICATION_OPTIONS,

SA_CTL_EVT_OPT_BIT_REQUEST_READY_ENABLED

);

if (result) { /* handle error */ }

// send asynchronous request

SA_CTL_RequestID_t rID;

result = SA_CTL_RequestReadProperty(

dHandle, 0, SA_CTL_PKEY_CHANNEL_STATE, &rID, 0

);

if (result) { /* handle error */ }

Example Event Processing

SA_CTL_Event_t evnt;

result = SA_CTL_WaitForEvent(dHandle, &evnt, SA_CTL_INFINITE);

if (result) { /* handle error */ }

if (evnt.type == SA_CTL_EVENT_REQUEST_READY) {

// extract event data

SA_CTL_RequestID_t rID = SA_CTL_EVENT_REQ_READY_ID(evnt.i64);

int requestType = SA_CTL_EVENT_REQ_READY_TYPE(evnt.i64);

int dataType = SA_CTL_EVENT_REQ_READY_DATA_TYPE(evnt.i64);

// process read results

if (requestType == SA_CTL_EVENT_REQ_READY_TYPE_READ) {

size_t arraySize = SA_CTL_EVENT_REQ_READY_ARRAY_SIZE(evnt.i64);

switch (dataType) {

case SA_CTL_DTYPE_INT32:

{

std::vector<int32_t> values(arraySize);

result = SA_CTL_ReadProperty_i32(

23MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

dHandle, rID, values.data(), &arraySize

);

if (result) { /* handle error */ }

values.resize(arraySize);

// property data is now stored in values

break;

}

// handle other data types

}

}

}

2.4 Event Notifications

In some situations events might occur that require further attention or reactions by the user. To

avoid that the application has to poll the occurrence of such events the MCS2 offers a notification

system. If an event occurs the MCS2 generates a notification event informing about the situation.

The application may receive events using the SA_CTL_WaitForEvent function. It returns events

in form of a pointer to the struct:

typedef struct {

uint32_t idx;

uint32_t type;

union {

int32_t i32;

int64_t i64;

uint8_t unused[24];

};

} SA_CTL_Event_t;

The fields of the struct have the following meaning:

• idx holds the source index that the event originated from. This may be a device, module or

channel index, depending on the event type.

• type holds the type of the event. See chapter 5 "Event Reference" for a detailed description

of the events and their parameters.

• i32 / i64 / unused are parameter fields that further describe the event. The meaning

depends on the event type.

While the event type indicates "what happened" the event parameter gives a more detailed hint

why the event occurred. Note that the event queue is cleared when connecting to a device. This

means that events which occurred before the connection was established are silently dropped.

24MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

The SA_CTL_Cancel function can be used to abort a waiting SA_CTL_WaitForEvent call. An

event can also be translated into a human readable string by using the SA_CTL_GetEventInfo

function.

Note that all controller events are enabled by default. There is no property to explicitly enable

or disable any specific controller events. Only API events are disabled by default and need to be

enabled explicitly by configuring the Event Notification Options property.

2.5 Module Overview

Each MCS2 controller consists of one interface module to provide a communication interface (e.g.

USB or ethernet interface) and one or more driver modules to control actuators with different driv-

ing principles (e.g. stick-slip piezo actuators or magnetic driven positioners). Each driver module

has a specific number of channels and optionally may carry an I/O module for auxiliary inputs and

outputs. One sensor module per driver is required to connect the positioners to the controller. An

optional hand control module may be integrated in the main controller or placed inside a sepa-

rate housing to be connected to the main controller. Figure 2.4 shows the device structure on the

example of a controller with two driver modules. Please refer to the MCS2 User Manual for more

information about the hardware components of the MCS2 system.

MCS2

PC

USB or
Ethernet

Hand Control
Module (optional)

Auxiliary Inputs and Outputs

Sensor
Module 1

Stage 1

Analog
Sensor
Data

Actuator
Driving
Signals

I/O Module (optional)

Interface

M
o

d
u

le
 2

M
o

d
u

le
 1

Sensor
Module 2

Stage 2

Figure 2.4: MCS2 Device Structure

It may be useful for an application to know the type of the channel or module e.g. to decide if

a specific feature may be used. The Module Type and Channel Type properties return the type

code of the module and channel. Although the type of the interface is usually well known when

connecting to a device (the device locator reflects the type of interface) it may be read with the

Interface Type property.

The following modules are of interest for the programming of the MCS2:

2.5.1 USB Interface

MCS2 devices with USB interface (SA_CTL_INTERFACE_USB) support the binary SmarActCTL pro-

tocol. The USB interface does not need any interface configuration.

25MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

2.5.2 Ethernet Interface

MCS2 devices with ethernet interface (SA_CTL_INTERFACE_ETHERNET) support the binary Smar-

ActCTL protocol as well as a SCPI oriented ASCII protocol. See section 6 "ASCII Interface" for more

information. The ethernet interface must be configured with an IP configuration to match the

users network settings. See section 2.1.4 "Network Interface Configuration" for more information.

2.5.3 Stick-Slip Piezo Driver

The Stick-Slip Piezo Driver module (SA_CTL_STICK_SLIP_PIEZO_DRIVER) allows to drive three

piezo driven stick-slip positioners. These positioners have the following features and require-

ments:

• The positioners may be commanded to perform open-loop movements (Scanning and Step-

ping) and closed-loop movements. (The positioners must be equipped with integrated sen-

sors to perform closed-loop movements).

• Stick-Slip piezo actuators are self-locking. This means that they hold their position roughly

without applying any driving signals to the actuator.

• The positioner type must be configured manually to the channel according to the connected

positioner. See section 2.6 "Positioner Types" for more information.

• The amplifier of the driver channel is enabled and the channel is in the stopped state at

startup. Commanding a closed-loop movement enables the control-loop. See section 2.7

"Moving Positioners" for more information.

• The channel may be instructed to actively hold the target position after it has been reached.

(See Hold Time property.) After the hold time elapsed the channel is stopped.

• Closed-loop movements may be commanded without and with velocity control (and addi-

tionally acceleration control). If no velocity is defined the maximum positioner speed is lim-

ited only by the max closed-loop frequency (See Max Closed Loop Frequency property.)

• The sensor power-save mode may be used to reduce the generated thermal load of the

positioner while resting for the operation in temperature critical environments. See section

2.11 "Sensor Power Modes" for more information.

2.5.4 Magnetic Driver

The Magnetic Driver module (SA_CTL_MAGNETIC_DRIVER) allows to drive three brushless per-

manent magnet positioners. These positioners have the following features and requirements:

• Integrated sensors are required for the operation of these positioners. The sensor feedback

is used for the electronic commutation (phasing) as well as to perform closed-loop move-

ments. Open-loop movements are not available.

• Magnetic positioners are not self-locking. This means that they require the control-loop to

be enabled to continuously update the driving signals and to actively hold their position.

26MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

• SmarAct positioners are equipped with the SmarAct Positioner ID System. The positioner

type is automatically detected and configured when the positioner is attached to a channel.

See section 2.6 "Positioner Types" for more information.

• In general the amplifier is disabled at startup and must be explicitly enabled before being

able to perform closed-loop movements. This also implicitly starts the phasing sequence of

the positioner. See section 2.22 "Phasing of Magnetic Driven Positioners" for more informa-

tion. Alternatively the channel may be configured to automatically enable the amplifier on

startup. (See Startup Options property.)

• All movements require the velocity and acceleration control to be active to define the velocity

resp. the acceleration with which the closed-loop movement is performed. See section 2.7.4

"Closed-Loop Movements" for more information.

2.6 Positioner Types

Ch0 Positioner Type

SLxS1SS

SRxS1S6S

SLxS1SS

MCS2

Ch1 Positioner Type

Ch2 Positioner Type

The positioner type gives the controller information about how to

calculate positions, handle the referencing, configure the control-

loop, etc.

The MCS2 controller provides sets of standard configuration pa-

rameters for all kinds of SmarAct positioners. For the majority of

applications these predefined types are sufficient.

Note that the positioner type is represented by a generic type code

instead of the descriptive name string. The descriptive name may

be read with the Positioner Type Name property. Furthermore,

the Tuning and Customizing Properties may be used to read addi-

tional information of the configured positioner type.

NOTICE
When the positioner type of a channel is changed (by manual configuration or by

automatic detection), the channel must be calibrated to ensure proper operation

of the positioner. See section 2.7.1 "Calibrating" for more information.

The sensor module provides the appropriate supply voltage for the integrated sensors of the po-

sitioners according to the configured positioner types. Note that this supply voltage configuration

is global for all channels of a sensor module.

27MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

NOTICE
When using positioners withM- or L-sensor on at least one channel of a specific

driver module all positioner types of thismodule must be set to aM- or L-sensor

type too to configure the correct sensor supply voltage. This rule applies even if

the other channels of the driver module are unused, respectively no positioners

are connected.

Please refer to the MCS2 Positioner Types document for a list of available positioner types.

2.6.1 Manual Positioner Type Configuration

For positioners that are not equipped with the SmarAct positioner ID system the channel must

be configured with the type of positioner that is connected. To configure a positioner type to a

channel simply set the Positioner Type property.

Each channel stores the positioner type setting to non-volatile memory. Consequently, there is no

need to configure the positioner type for each session. Only when changing the physical setup

(switching positioners etc.) the channel must be reconfigured (and calibrated) again.

2.6.2 Automatic Positioner Type Configuration

The MCS2 automatically configures the Positioner Type for positioners that are equipped with the

SmarAct Positioner ID System when attaching it to the channel. Additionally, the controller will

generate a corresponding Positioner Type Changed event. The event parameter or the Positioner

Type property provide the type that was automatically configured. The Positioner Type property

can also be used to select custom positioner types. (See next section for more details on custom

positioner types.)

Note that the channel must be calibrated once again after the positioner type was changed by the

automatic detection.

2.6.3 Custom Positioner Types

In special cases it might be necessary to modify tuning parameters of a positioner type to adapt to

an application perfectly. The MCS2 controller offers this possibility by giving access to the tuning

parameters. Once the tuning is finished the set of parameters may be saved to a custom positioner

type slot. As a safety feature, all tuning properties are write protected by default. This prevents

accidental modification of any parameters. A special key must be written to the Positioner Write

Protection property to unlock the write access to the tuning properties. As long as the write pro-

tection is active, writing to a tuning property will return a SA_CTL_ERROR_PERMISSION_DENIED

error.

Custom positioner type slots are also used to define the control-loop parameters in case an aux-

iliary input is used as feedback signal for the control-loop. Refer to section 2.19.5 "Using Analog

Inputs as Control-Loop Feedback" for more information.

28MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Creating Custom Positioner Types

When tuning a positioner type the first step should be to select one of the predefined positioner

types to act as a template. Note that this step is important to define several internal parameters

which are not user accessible. The predefined positioner type defines e.g. the sensor type (S, L, M,

etc.) and sensor supply voltage as well as the position calculation parameters. (Positioners that

support the SmarAct Positioner ID System automatically set the appropriate type when attaching

it to the channel.) After this, tuning parameters may be modified. As long as the modified posi-

tioner type was not saved to a custom slot, the positioner type is read as 0 to indicate that the

modifications are volatile. (The Positioner Type Name property returns ‘modified‘ in that case.)

Powering down the device in this state will discard the changes made. To save the modified set

of parameters use the Save Positioner Type property. This will save the settings to one of four

custom positioner type slots and set the Positioner Type to the new custom type implicitly.

CAUTION
Configuring inappropriate values may result in unstable or unexpected behavior

of the positioners and potential damage of the stage. Custom tuning must be

used with caution!

The available properties for customizing a positioner type are described in section 4.9 "Tuning and

Customizing Properties".

Automatic Positioner Type Configuration

If the Positioner Type is automatically detected and configured when attaching the positioner to

the channel (e.g. for magnetic driven positioners) the appropriate template type for the custom

tuning is set automatically too. After tuning the parameters the positioner configuration may be

saved to to one of the four custom positioner type as described above. This implicitly sets the

Positioner Type to the new custom type.

To return to the predefined (and automatically detected) type the Positioner Type property must

be set to the special value SA_CTL_POSITIONER_TYPE_AUTOMATIC (299). This configures the

predefined type and sets the Positioner Type to this type implicitly. Note that the channel must be

calibrated again after changing the positioner type to ensure proper operation of the positioner.

See section 2.7.1 "Calibrating" for more information.

Note that the write access to the Positioner Type property is restricted to custom positioner types

and to the special automatic positioner type value.

2.7 Moving Positioners

There are several commands available that induce a movement of a positioner (movement com-

mands). Mainly these are:

• Calibrating (SA_CTL_Calibrate).

29MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

• Referencing (SA_CTL_Reference).

• Moving (SA_CTL_Move). Depending on the configured Move Mode this command covers:

– Open-loop movements (Scanning and Stepping for piezo-driven positioners)

– Closed-loop movements

• Stopping (SA_CTL_Stop).

These commands are described in the following sections.

Generally, the base unit for position values is pico meters (pm) for linear positioners and nano

degrees (n°) for rotary positioners.

NOTICE
API functions that involve movement of positioners (such as SA_CTL_Move,

SA_CTL_Calibrate and SA_CTL_Reference) are always sent to the de-

vice asynchronously. Therefore, these functions do not return an acknow-

ledge or error directly. Instead, the movement commands will always gen-

erate a SA_CTL_EVENT_MOVEMENT_FINISHED event where the event pa-

rameter indicates success or failure. For example, if a closed-loop move-

ment could not be started due to a missing sensor, the event parameter will

be SA_CTL_ERROR_NO_SENSOR_PRESENT. See See section 2.7.7 "Movement

Feedback" for more information.

2.7.1 Calibrating

Even though every positioner is categorized by its type (which is configured to the channel via

the Positioner Type property, see also section 2.6 "Positioner Types") each individual positioner

may have slightly different characteristics that require the tuning of some internal parameters for

correct operation and optimal results.

The SA_CTL_Calibrate function is used to adapt to these characteristics and automatically de-

tects parameters for an individual positioner. It must be called once for each channel if the me-

chanical setup changes (different positioners connected to different channels). The calibration

data will be saved to non-volatile memory. If the mechanical setup is unchanged, it is not nec-

essary to run the calibration on each initialization, but newly connected positioners have to be

calibrated in order to ensure proper operation.

The calibration routine is only executable by a positioner that has a sensor attached to it. The

sensor must also be enabled or in power save mode (see the Sensor Power Mode property). Oth-

erwise the SA_CTL_EVENT_MOVEMENT_FINISHED event that is generated by the channel will

hold an error code as parameter. The calibration takes a few seconds to complete. During this

time the Channel State bit SA_CTL_CH_STATE_BIT_CALIBRATING is set.

30MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

CAUTION
As a safety precaution, make sure that the positioner has enough freedom to

move without damaging other equipment.

Before calling the SA_CTL_Calibrate function the Calibration Options property should be con-

figured to define the behavior of the calibration sequence. This property holds a bit mask which is

outlined in the following table.

Bit Name Short Description

0 Direction Defines the direction in which the positioner will move

for calibration purposes. The movement is started in

backward direction if this flag is set.

1 Detect Distance Code Inversion Activates a special mode that detects the individual

setup of positioners with multiple reference marks.

For normal calibration this bit should be set to 0.

2 Advanced Sensor Correction1 Activates a calibration routine to compensate periodic

sensor errors.

8 Limited Travel Range1 Allows more than one endstop while calibrating.

Should be used for positioners with limited travel

range, e.g. micro grippers.

Undefined flags are reserved for future use. These flags should be set to zero.

Signal Correction Calibration (calibration options 0x00 or 0x01)

During this calibration routine the positioner will perform a movement of up to several mm in

the configured direction to optimize the position calculation for the sensor signals of the posi-

tioner. Also the direction sense between sensor and actuator is determined (and automatically

adjusted) by this routine. This is required for a proper operation of the control-loop. The signal

correction calibration should not be started near a mechanical end stop. Nonetheless the calibra-

tion sequence automatically detects an endstop and reverts the movement direction to continue

the calibration in the opposite direction. If more than one endstop is detected the calibration

sequence is aborted with an error.

Some positioners (e.g. micro grippers) have a very limited travel range. For these positioners the

movement distance may be too small to successfully finish the calibration.

The SA_CTL_CALIB_OPT_BIT_LIMITED_TRAVEL_RANGE calibration options flag may be used

to increase the number of allowed endstops while calibrating.1 The calibration sequence then

moves back and forth between the two endstops to perform the signal corrections.

Positioners that are referenced via a mechanical end stop (see section 2.8.4 "Positioners With

Endstop Reference") are moved to the end stop as part of the calibration routine. For this move-

ment the configured Move Velocity and Move Acceleration are used.

1This option is only applicable for Stick-Slip Piezo Driver.

31MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Which end stop is used for referencing is defined by the configured Safe Direction instead of the

direction bit of the Calibration Options property. Note that when changing the Safe Direction the

end stop must be calibrated again for proper operation.

As a safety precaution, make sure that the positioner has enough freedom to move without dam-

aging other equipment.

Once the calibration has finished successfully the SA_CTL_CH_STATE_BIT_IS_CALIBRATED bit

of the Channel State property is set.

Note that Magnetic Driver channels must be calibrated in order to perform movements. Calling

the SA_CTL_Move or SA_CTL_Reference function will otherwise generate a "movement fin-

ished" event with its parameter set to SA_CTL_ERROR_NOT_CALIBRATED.

Distance Code Inversion Detection (calibration options 0x02 or 0x03)

This calibration routine may be used to correct the absolute position calculation when referencing

positioners with multiple reference marks. In rare cases the reference algorithm may produce

faulty results due to a reference coding mismatch. These situations may be resolved by executing

this calibration routine.

Advanced Sensor Correction Calibration (calibration options 0x04 or 0x05)1

This calibration routine is used to improve the absolute sensor accuracy by compensating the pe-

riodic sensor error. A calibration sequence is needed to generate a compensation table which is

stored in the controller. This calibration must be performed for every channel that should use the

advanced sensor correction. During this calibration routine the positioner will perform a move-

ment of up to several mm in the configured direction. The compensationmay then be activated by

setting the SA_CTL_SIGNAL_CORR_OPT_BIT_ASC bit of the Signal Correction Options property.

NOTICE
The advanced sensor correction needs a feature permission to be activated on

the controller. See section 2.23 "Feature Permissions" for more information.

2.7.2 Referencing

The SA_CTL_Reference function may be used to instruct a positioner to determine its physical

position. It will start to move in the configured search direction and look for a reference. The

positioner must have a sensor attached to it and the sensor must be enabled or in power save

mode in order to perform the referencing sequence (see the Sensor Power Mode property).

Depending on the reference strategy (which is partly predefined by the positioner type and partly

configurable) as well as the individual positioner, the referencing takes some time to complete.

During this time the Channel State bit SA_CTL_CH_STATE_BIT_REFERENCING is set. In case the

32MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

reference could not be found the SA_CTL_EVENT_MOVEMENT_FINISHED event that is generated

by the channel will hold an error code as parameter.

Before calling the SA_CTL_Reference function the Referencing Options property can be con-

figured to define the behavior of the reference sequence. This property holds a bit mask with

several options that influence the strategy of how to find the reference. Please refer to section

2.8.1 "Reference Marks" for more information.

The velocity and acceleration for the referencing movement may be specified with the Move Veloc-

ity and Move Acceleration properties. To guarantee that the reference mark can be found securely

the maximum allowed velocity is limited and may be lower than for regular closed-loop move-

ments. Since the limit is quite high this is usually not a restriction. The actual maximum value

depends on the positioner type. (E.g. 125 mms−1 for a linear positioner with S-sensor.) However,

if a higher move velocity is configured when starting the referencing the value is temporary limited

by the controller.

Note that reference movements (when successful) generate two events. One when the reference

position has been determined and one after the positioner has come to a stop. The first event is

mainly useful when using the Continue On Reference Found feature (see section 2.8.1 "Reference

Marks").

Once the channel "knows" its physical position the SA_CTL_CH_STATE_BIT_IS_REFERENCED

bit of the Channel State property is set.

2.7.3 Open-Loop Movements

There are two types of open-loop movement:*

• Scanmovements allow to control the deflection of the piezo element of the positioner directly.

To perform scan movements the Move Mode property must be set to one of the values

SA_CTL_MOVE_MODE_SCAN_ABSOLUTE or SA_CTL_MOVE_MODE_SCAN_RELATIVE.

The scan velocity may be specified with the Scan Velocity property. The SA_CTL_Move func-

tion must be called to start the actual scan movement. The move value parameter of the

SA_CTL_Move function is then interpreted as target scan position to which to scan to, re-

spectively scan target increment in case of relative scan movement. The valid range for

the scan position is 0 . . . 65 535 for absolute scan positions and −65535 . . . 65 535 for rela-

tive scan increments. Note that for relative scan movements the movement will stop at the

boundary if the resulting absolute scan target exceeds the valid range.

• Step movements allow to perform a burst of steps with the given frequency and amplitude.

To perform step movements the Move Mode must be set to SA_CTL_MOVE_MODE_STEP.

Frequency and amplitude of the generated output signal may be specified with the proper-

ties Step Frequency and Step Amplitude. The SA_CTL_Move function must be called to start

the actual step movement. Themove value parameter of the SA_CTL_Move function is then

interpreted as number of steps. The sign of the value codes the movement direction. The

valid range for the step parameter is −100000 . . .−1 and 1 . . . 100000.

The Channel State bit SA_CTL_CH_STATE_BIT_ACTIVELY_MOVING is set while performing scan

or step movements.

*Note that open-loop movements are not available for Magnetic Driver.

33MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

2.7.4 Closed-Loop Movements

In order to perform a closed-loop movement the positioner must have a sensor attached to it.

The sensor must also be enabled or in power save mode (see the Sensor Power Mode property).

If this is not the case the SA_CTL_EVENT_MOVEMENT_FINISHED event that is generated by the

channel will hold an error code as parameter. Furthermore the amplifier must be enabled (see

the Amplifier Enabled property).

Before calling the SA_CTL_Move function the Move Mode property must be set to one of the

following values:

• SA_CTL_MOVE_MODE_CL_ABSOLUTE In this mode the move value that is passed to the

SA_CTL_Move function is interpreted as the new absolute target position the positioner

should move to.

• SA_CTL_MOVE_MODE_CL_RELATIVE In this mode the move value that is passed to the

SA_CTL_Move function is added to the current (target) position. The move value of 0 has a

special meaning in this mode: the channel aborts an ongoing movement and actively holds

the current position.

The valid range for the position is −100× 1012 . . . 100× 1012 pm or n°.

Additionally, the following properties may be configured to modify the behavior of the closed-loop

movement (see also the detailed property descriptions in chapter 4):

• Move Velocity and Move Acceleration

These properties define the velocity resp. the acceleration with which the closed-loop move-

ment is performed.

If the move velocity is set to zero (only for Stick-Slip Piezo Driver) then the velocity control is

disabled and the positioner moves to the target position as fast as possible, more precisely,

only limited by themaximum closed-loop frequency (see Max Closed Loop Frequency).

Likewise, if the acceleration is set to zero (only for Stick-Slip Piezo Driver) then the acceler-

ation control is disabled and the positioner accelerates and decelerates as fast as possible

(only limited by mechanical factors).

• Control Loop Input

This property defines the feedback signal for the control-loop.

– SA_CTL_CONTROL_LOOP_INPUT_DISABLED The closed-loop operation is disabled.

A SA_CTL_ERROR_CONTROL_LOOP_INPUT_DISABLED error will be generated when

trying to command a closed-loop movement.

– SA_CTL_CONTROL_LOOP_INPUT_SENSOR The channel uses the integrated sensor of

a positioner to calculate the current position. This position is used as input signal for

the control-loop to allow closed-loop position control.

– SA_CTL_CONTROL_LOOP_INPUT_AUX_IN The input signal of an auxiliary input (e.g.

an analog input of an MCS2 IO module) is used as control-loop input.

34MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

• Positioner Control Options

This property defines several options that apply to closed-loop movements. The property

value is a bit field containing the following independent flags:

Bit Name Short Description

0 Accumulate Relative Position Disabled Disables the relative position accumula-

tion.

1 No Slip1 Forbid the execution of actuator slips

(steps).

2 No Slip While Holding1 Forbid the execution of actuator slips

(steps) only while holding the target po-

sition.

3 Forced Slip Disabled1,3 Disables the forced slip feature.

4 Stop On Following Error Stop positioner if a following error was

detected.

5 Target To Zero Voltage1,3 The driver output voltage is forced to

zero while retaining the target position

after a closed-loop movement.

6 CL Disable On Following Error2 Disable control-loop if a following error

was detected.

7 CL Disable On Emergency Stop2 Disable control-loop if an emergency

stop was triggered.

Undefined flags are reserved for future use. These flags should be set to zero.

The flags have the following meaning:

Accumulate Relative Positions Disabled (Bit 0) This flag affects the behavior of a posi-

tioner if a relative position command is issued before a previous one has finished. If

relative position commands are to be accumulated (bit cleared, default) then all new

relative position commands are added to the previous target position. Otherwise (bit

set) the movement is executed relative to the position of the positioner at the time of

command arrival.

Example: Say the positioner is currently at its zero position. Two relative movement

commands are issued in fast succession both with +1mm as relative target. With accu-

mulation enabled (default) the final position will be 2mm. With accumulation disabled

the final position will vary (e.g. 1.12mm) depending on when the second command

arrives at the controller.

No Slip (Bit 1)1 If this flag is set the actuator driving signal generation will never generate

slips (steps). This means that only scan movement in the range of the piezo is per-

formed for targeting. It might be useful for applications where the vibration of the

piezo slip is unwanted, e.g. while approaching to a probe in the sub micrometer range.

1This option is only applicable for Stick-Slip Piezo Driver.
2This option is only applicable for Magnetic Driver.
3This option has no effect for dual-piezo hybrid positioners.

35MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

No Slip While Holding (Bit 2)1 This flag affects the behavior of a positioner if it is instructed

to hold the target position after reaching it (see the Hold Time property). The piezo de-

flection will be adjusted automatically to hold the position. Additionally it may become

necessary to do further steps to hold the position if the deflection of the piezo reaches

a boundary. However, if this is not desired, this flagmay be used to forbid the execution

of steps even if this means that the position can not be held. Note that this flag has no

effect if the No Slip flag (Bit 1) or the Target To Zero Voltage flag (Bit 5) is active.

Forced Slip Disabled (Bit 3)1,3 When reaching a target position the channel will try to stop

at approx. 50% of its step size, thus improving the holding feature. This is achieved by

forcing a slip, just before reaching the target position. If this behavior is unwanted it

can be disabled with this flag.

Stop On Following Error (Bit 4) This flag defines if a closed-loopmovement should be stop-

ped as soon as the configured following error is exceeded. Magnetic driven positioners

enter the holding state to stop the ongoing movement in this case. Note that this flag

has no effect for movements without velocity control, if the Following Error Limit is set

to zero or if the CL Disable On Following Error flag (Bit 6)2 is active.

Target To Zero Voltage (Bit 5)1,3 If this flag is set a special holding sequence is started af-

ter a target position was reached. The controller will then perform several piezo scan

operations to force the output voltage to zero while retaining the target position. This

feature is e.g. useful for applications where the positioner should be moved to a spe-

cific target position and then should be disconnected from the controller without ad-

ditional movement of the positioner carriage. (Which usually happens due to the con-

traction of the piezo element while discharging from the holding voltage.) Note that the

hold threshold for this feature may be configured with the Target To Zero Voltage Hold

Threshold property. If a Hold Time is specified the sequence is repeated whenever the

difference between current position and target position exceeds the configured hold

threshold.

CL Disable On Following Error (Bit 6)2 This flag defines if the control-loop should be dis-

abled instead of just stopping the movement as soon as the configured following error

is exceeded while performing a movement or while actively holding the position. Note

that disabling the control-loop removes any holding force from the positioner and thus

must be used with caution.

CL Disable On Emergency Stop (Bit 7)2 This flag defines if the control-loop should be dis-

abled instead of just stopping the movement as soon as an emergency stop was trig-

gered. See section 2.20.2 "Emergency Stop Mode" for more information. Note that dis-

abling the control-loop removes any holding force from the positioner and thus must

be used with caution.

• Max Closed Loop Frequency*

Generally, the channel will not drive the positioner with frequencies above the maximum

allowed frequency. If the maximum frequency is set too low for a certain move velocity, then

the move velocity might not be reached or held. In this case the maximum frequency must

be increased. Be aware that different positioners reach different velocities. If a positioner

is not able to move as fast as the configured move velocity, then the driver will cap at the

maximum driving frequency.

36MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

• Hold Time*

The channel may be instructed to hold the target position after it has been reached. This

may be useful to compensate for drift effects and the like. The positioner will implicitly

adjust the deflection of the piezo to hold the position if needed. When the piezo element

of the positioner reaches a boundary a single step is performed. While holding the position

the Channel State bit SA_CTL_CH_STATE_BIT_CLOSED_LOOP_ACTIVE is set and the bit

SA_CTL_CH_STATE_BIT_ACTIVELY_MOVING is cleared. After the hold time elapsed the

channel is stopped.

Note that the closed-loop movement is considered finished as soon as the target position is

reached and not when the optional hold time has elapsed.

The endstop detection is still active in holding state. If a positioner is moved away from

the target position by external forces and the channel is not able to hold the target position

for a longer time an endstop is triggered. A SA_CTL_EVENT_HOLDING_ABORTED event is

generated to notify about this and the channel is stopped.

• Actuator Mode*

This mode defines the type of actuator driving signal generation.

– SA_CTL_ACTUATOR_MODE_NORMAL The normal mode is the default mode. It offers

open-loop step movement as well as closed-loop movement.

– SA_CTL_ACTUATOR_MODE_QUIET The quiet mode only allows to perform closed-loop

movement and reduces the noise that is emitted from the positioners while moving. It

is useful in applications where the noise emission is disturbing. The trade-off between

the quiet and the normal mode is the higher (generated) thermal load of the controller

in quiet mode. For this reason the quiet mode is not recommended for continuous

operation.

– SA_CTL_ACTUATOR_MODE_LOW_VIBRATION The low vibration mode allows to per-

form closed-loop movements which produce as little vibrations as possible. It is useful

for applications where the high-frequent vibrations of the stick-slip driving principle

cause troubles.

NOTICE
The low vibration mode needs a feature permission to be activated on the

controller. See section 2.23 "Feature Permissions" for more information.

Once configured, call the SA_CTL_Move function to start the actual movement. While executing

a closed-loop movement the Channel State bits SA_CTL_CH_STATE_BIT_ACTIVELY_MOVING

and SA_CTL_CH_STATE_BIT_CLOSED_LOOP_ACTIVE are set.

*This property is only available for Stick-Slip Piezo Driver.

37MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

2.7.5 Stopping Movements

The SA_CTL_Stop function stops any ongoing movement. The exact behavior of the different

channel types is described in the following sections.

A digital input of an I/O module may be used to issue an emergency stop of all channels. See

section 2.20.2 "Emergency Stop Mode" for more information.

Stick-Slip Piezo Driver

The SA_CTL_Stop function disables the control-loop and also stops the hold position feature of

a closed-loop command.

To command the channel to abort an ongoing movement and actively hold the current position

("enter holding"), set the Move Mode property to SA_CTL_MOVE_MODE_CL_RELATIVE and issue

a SA_CTL_Move command with its move value parameter set to zero. The Hold Time property

must be set to a non-zero value, otherwise the channel is stopped without actively holding the

position. This command sequencemay also be used to bring the channel from the stopped into the

holding state to actively hold the current position without effectively commanding a movement.

For movements with enabled acceleration control (see Move Acceleration) a "stop" command in-

structs the positioner to come to a halt by decelerating to zero velocity before stopping. A second

"stop" command triggers a hard stop.

Magnetic Driver

The SA_CTL_Stop function instructs the positioner to come to a halt by decelerating to zero

velocity according to the configuredMove Acceleration before entering the holding state. A second

"stop" command triggers a hard stop by immediately entering the holding state at the current

position. The SA_CTL_Move command with its move value parameter set to zero (and the Move

Mode property set to SA_CTL_MOVE_MODE_CL_RELATIVE) also leads to a hard stop by entering

the holding state at the current position.

To disable the control-loop (and remove the holding force from the positioner) set the Amplifier

Enabled property to SA_CTL_DISABLED (0x00).

2.7.6 Overwriting Movement Commands

Generally, the function calls for movement commands (SA_CTL_Move, SA_CTL_Calibrate,

SA_CTL_Reference) return as soon as the command has been transmitted to the hardware;

the calls do not block as long as the command is in execution. Therefore, the software is free to

issue new commands to the hardware (potentially to other channels) while the movement is being

performed. In particular, new movement commands may also be sent to the same channel at

any time. This will cause the previous movement command to be implicitly aborted. Note that

there is no need to explicitly stop a channel before sending a new movement command. The new

command will simply overwrite the current one.

38MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Note on working with events: Overwriting movement commands (sending movement com-

mands before the command finished event of the previous command has arrived) leads to a race

condition. The second command might arrive just before the first has completed, thus, only one

command complete event is generated (when the second command completes). However, if the

second command arrives just after the first has completed, two command complete events are

generated (one for each command).

Note on working with a Hand Control Module: Special care must be taken when using a hand

control module and a software running on a PC at the same time. The hand control module

sets several movement relevant properties (like move velocity, move acceleration, hold time, step

frequency, step amplitude, etc.) prior to commanding a movement command. Thus user software

must not rely on previously configured parameters since they may have been modified in the

meantime by the hand control module. To be on the safe side, user software may set the Hand

Control Module Lock Options property to disable the control inputs of the hand control module

while its operation.

2.7.7 Movement Feedback

Movement commands are generally executed asynchronously by the device. Particularly, the API

functions do not block for the duration of the execution of the movement. Instead, the functions

simply trigger the start of the movement and the software may perform other tasks while the

positioner is in motion (e.g. tracking the movement and continuously display the current position).

When issuing movement commands it is usually desirable to know if the movement could suc-

cessfully be started and especially when the controller has finished the movement (e.g. found the

reference mark, reached the target position, etc.). Generally, there are two methods of acquiring

this information:

• Polling the Channel State property

• Listening to events

Polling

The Channel State property always indicates the current state of the channel. It may be used to

check whether the positioner is moving, holding, stopped etc. The four lower state bits are of in-

terest in this context. The following table summarizes the valid combinations and their meanings:

39MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Bit 3
Referencing

Bit 2
Calibrating

Bit 1
Closed

Loop Active

Bit 0
Actively

Moving

Activity

0 0 0 0 Stopped / Control-loop disabled

0 0 0 1 Performing an open-loop movement

(stepping or scanning) or phasing

sequence

0 0 1 0 Holding the current target position

(after a closed-loop movement)

0 0 1 1 Performing a closed-loop movement

(moving to target position)

0 1 0 1 Performing a calibration sequence

1 0 1 1 Performing a reference sequence

Since movement commands are always sent asynchronously to the device, they do not return an

acknowledge or error directly. Instead, events are generated. (See next section.)

If event notifications are not used, the success or failure of a movement command may be deter-

mined by monitoring the SA_CTL_CH_STATE_BIT_MOVEMENT_FAILED bit of the Channel State

property. The flag is set to zero if the movement could successfully be started. If the flag is read as

one an error occurred. The movement could not be started or the execution failed. The reason for

the failure may then be determined by reading the Channel Error property. Note that the channel

error is reset to SA_CTL_ERROR_NONE by reading the property.

Further state flags may be monitored to indicate if the execution of a movement could not finish.

(E.g. if an endstop was detected while executing the movement). Their meaning is described in

section 2.10.3 "Channel State Flags".

Events

Generally, every movement command (including calibrating and referencing) generates an event

of type SA_CTL_EVENT_MOVEMENT_FINISHED when the execution has finished. Note that a

movement is also considered as "finished" if it could not be started due to an error, e.g. an invalid

parameter or a closed-loop movement could not be executed, because the sensor is offline. In

any case the event parameter will indicate the result of the movement execution. The following

event parameters are possible:

Table 2.1 – Movement Finished Event Parameters

Parameter Meaning

SA_CTL_ERROR_NONE The movement finished with no error. In this case

the event occurs at the time when the movement

has finished, e.g. when reaching the target posi-

tion.

Continued on next page

40MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Table 2.1 – Continued from previous page

Parameter Meaning

SA_CTL_ERROR_INVALID_PARAMETER The movement could not be executed because a

parameter was invalid.

SA_CTL_ERROR_ABORTED The movement was started, but then aborted by

a stop command. In this case the event occurs

at the time the controller received the stop com-

mand.

SA_CTL_ERROR_NO_SENSOR_PRESENT,

SA_CTL_ERROR_SENSOR_DISABLED

The closed-loop movement could not be started,

because no sensor is (currently) available.

SA_CTL_ERROR_POWER_SUPPLY_DISABLED,

SA_CTL_ERROR_AMPLIFIER_DISABLED

The movement could not be started, because the

power supply / amplifier is disabled.

SA_CTL_ERROR_END_STOP_REACHED The closed-loop movement was started, but could

not be finished normally, because an end stop was

encountered.

SA_CTL_ERROR_FOLLOWING_ERR_LIMIT The closed-loop movement was started, but could

not be finished normally, because an following er-

ror limit was exceeded.

SA_CTL_ERROR_RANGE_LIMIT_REACHED The closed-loop movement was started, but could

not be finished normally, because a range limit

was reached.

SA_CTL_ERROR_BUSY_STREAMING The movement could not be started, because the

channel is currently participating in a trajectory

stream.

SA_CTL_ERROR_NOT_PHASED The movement could not be started, because the

channel is not phased.

SA_CTL_ERROR_NOT_CALIBRATED The movement could not be started, because the

channel is not calibrated.

SA_CTL_ERROR_POSITIONER_FAULT The movement could not be started, because the

channel has detected a positioner fault and the

amplifier was disabled.

SA_CTL_ERROR_POSITIONER_OVERLOAD The movement could not be started, because the

channel detected a thermal overload of the po-

sitioner and the closed-loop operation was dis-

abled.

The full list of error codes may be found in the appendix A.1 "Error Codes".

41MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

2.8 Defining Positions

Since position calculation is done on an incremental basis, the MCS2 controller has no way of

knowing the physical position of a positioner after a system power-up. It simply assumes its start-

ing position as the zero position.

However, in many applications it is convenient to define a certain physical position as the zero

position. The Position property may be set for this purpose. It defines the current position to have

an arbitrary value. This can be the zero position or any other position (it is possible to have the

zero position outside the complete travel range of the positioner).

Figure 2.5 shows an example of a linear positioner. (a) shows the situation after a system power-

up. The positioner assumes its current position as zero. (b) shows the situation after the Position

property was set. The current position has been defined to +3mm and the measuring scale is

shifted accordingly.

Figure 2.5: Scale Shift

42MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

2.8.1 Reference Marks

In the example above the physical position of a positioner must be determined by some external

method and then configured to the system. Moreover, this procedure must be done on every

system power-up.

To overcome this inconvenience the SA_CTL_Reference function may be used to determine the

physical position in an automated fashion. After this the controller will return position values ac-

cording to the positioners physical measuring scale (but see section 2.8.5 "Shifting the Measuring

Scale").

Regarding the referencing, positioner types fall into one of three possible categories:

• Single Reference Marks The reference mark of positioners with a single mark is usually

located near the middle of the travel range. The positioner will have to move to this mark in

order to know its physical position.

• Multiple Reference Marks Positioners of this type may calculate their physical position

by measuring the distance between two adjacent marks. This has the advantage that the

positioner typically only has to move a few milli meters before knowing its physical position

which is exceptionally useful when using positioners with very long travel ranges.

• Endstop Reference Type Positioners without any reference marks may use the mechanical

endstop at the end of their travel range as a known physical position.

The behavior of the positioner while referencing depends on the positioner type that is attached

to the channel (see Positioner Type property) as well as the configured referencing options (see

Referencing Options property). The referencing options modify the behavior of the referencing

algorithm. Currently, the following bits are available:

Table 2.2 – Referencing Options Bits

Bit Name Short Description

0 Start Direction Defines the direction in which the positioner will start

to look for a reference. The movement starts in back-

ward direction if this flag is set.

1 Reverse Direction Only relevant for positioners that have multiple refer-

ence marks. Will reverse the search direction as soon

as the first reference mark is found.

2 Auto Zero The current position is set to zero upon finding the

reference position.

3 Abort On End Stop Will abort the referencing on the first end stop that is

encountered.

4 Continue On Reference Found Will not stop the movement of the positioner once

the reference is found. The positioner must be

stopped manually.

Continued on next page

43MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Table 2.2 – Continued from previous page

Bit Name Short Description

5 Stop On Reference Found Will stop the movement of the positioner immedi-

ately after finding the reference.

6 .. 31 Reserved These bits are reserved for future use.

NOTICE
Basically, the different mode flags may be combined to obtain a flexible behav-

ior when referencing positioners. However, bits 4 and 5 cannot be combined.

If both bits are set then the Stop On Reference Found (bit 5) has priority over

Continue On Reference Found (bit 4). See the detailed description of the mode

flags below.

When the SA_CTL_Reference command has completed successfully, the system knows the

physical position of the positioner (see SA_CTL_CH_STATE_BIT_IS_REFERENCED of the Chan-

nel State property).

2.8.2 Positioners With Single Reference Marks

This section describes the behavior while referencing positioners with only one reference mark in

more detail. The images on the right side illustrate the behavior of an example positioner that

is being referenced. The vertical x-axis represents the travel range of the positioner. The square

brackets indicate mechanical end stops. The dashed line indicates the position of the reference

mark.

In the examples the positioner always starts at position 0 and the physical position is unknown (red

line). Once the reference mark has been found the physical position will become known (green

line). It is assumed that the physical zero position is on the reference mark.

44MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Default Behavior (reference mode 0b00000000)

By default the positioner will start to move in forward (positive) direction

and look for a reference mark. As soon as the positioner has passed over

the reference mark the internal position will be updated. This is indicated

by the second x-axis having a different scale shift.

The small overshoot represents the reaction time of the positioner stopping.

The amount of the overshoot depends on factors like the velocity with which

the referencing is performed, the mass that is mounted on the positioner or

a possibly configured acceleration control (in which case it takes some time

to decelerate the positioner).

The positioner will turn around and move to the exact location of the reference mark. After this

the referencing is complete.

Inverted Start Direction (reference mode 0b00000001)

Same as the default referencing, with the difference that the positioner will

start to move in backward direction and look for a reference mark.

In this example the positioner will encounter a physical end stop before find-

ing the mark. The positioner will automatically reverse its search direction at

the end stop and continue to look for the reference mark.

Note: If the positioner encounters a second end stop then the reference

algorithm will be aborted. The positioner is stopped and an error event is

generated. Reasons for this situation may be a mechanical or electrical de-

fect (the controller does not register the reference signal for some reason) or the referencemark is

outside the physical range of the positioner (e.g. the positioner has bumped against an obstacle).

Abort On End Stop (reference mode 0b00001000)

t

x

0

As described above, by default the positioner will start to look for a reference

mark in the start direction and reverse the search direction if a physical end

stop is detected.

If the abort on end stop flag is set then the positioner will not reverse the

search direction on detecting a physical end stop. Instead it will stop and

generate an error which means that the referencing is aborted and consid-

ered as failed.

This setting may be useful when it is necessary to forbid the movement of

the positioner in a direction other than the initial search direction.

45MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Continue On Reference Found (reference mode 0b00010000)

Compared to the default referencing behavior this flag causes the positioner

to continue to move in the current search direction after the reference has

been found. The positioner does not stop or even turn around to return to

the exact location of the reference mark. Instead the positioner must be

stopped manually (or it is implicitly stopped by a physical end stop).

This setting may be useful e.g. when referencing several positioners syn-

chronously that are mechanically connected in a parallel kinematic. A setup

like this could cause one positioner to block and therefore fail to reference if

another positioner has stopped because it has already found its reference mark.

Stop On Reference Found (reference mode 0b00100000)

t

x

0

0

x

Compared to the default referencing behavior this flag causes the positioner

to stop moving as soon as the reference has been found. The positioner

does not turn around and return to the exact location of the reference mark.

Instead the positioner simply stops where it is.

This implies that due to the small overshoot described above the positioner

will not come to stop exactly on the reference mark. Since in these examples

the zero position is on the reference mark, the position will not be zero after

the referencing has completed.

2.8.3 Positioners With Multiple Reference Marks

This section describes the behavior while referencing positioners with multiple reference marks

in more detail. The general principle is that the positioner must pass over two adjacent reference

marks. The physical position may then be determined by measuring the distance between these

two marks. This method reduces the distance a positioner has to travel to determine its physical

position compared to single reference marks, especially when operating with positioners with very

long travel ranges.

As in the previous section the images on the right side illustrate the behavior of an example po-

sitioner that is being referenced. The vertical x-axis represents the travel range of the positioner.

The square brackets indicate mechanical end stops. The dashed line indicates the positions of the

reference marks.

In the examples the positioner always starts at position 0 and the physical position is unknown (red

line). Once the reference mark has been found the physical position will become known (green

line).

46MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Default Behavior (without auto-zero, reference mode 0b00000000)

t

x

0

x

0

By default the positioner will start to move in forward (positive) direction

and look for a reference mark. When the positioner has found the first ref-

erence mark it will continue to move in forward direction and look for a sec-

ond mark. As soon as the positioner has passed over the second reference

mark the internal position will be updated according to the physical scale of

the positioner. At this point the logical scale offset will also be considered,

which restores a previously set scale (e.g. referenced with auto-zero in the

previous session). Note that this also applies if the controller is power cycled

between sessions since the logical scale offset is held in non-volatile memory. The distance-coded

reference marks make it possible to use any two reference marks of the positioner to restore the

same absolute scale. This is indicated by the second x-axis having a different scale shift.

As in the previous examples the small overshoot in the image represents the reaction time of the

positioner stopping. The amount of the overshoot depends on factors like the velocity with which

the referencing is performed, the mass that is mounted on the positioner or a possibly configured

acceleration control (in which case it takes some time to decelerate the positioner).

The positioner will turn around andmove to the exact location of the second referencemark. After

this the referencing is complete.

Auto-Zero Behavior (with auto-zero, reference mode 0b00000100)

t

x

0

x

0

Just like the default behavior, the positioner will move in forward (positive)

direction and look for two reference marks. The main difference to the de-

fault behavior is, that as soon as the positioner has passed over the second

reference mark the internal position will be set to 0 and the logical scale off-

set will be updated accordingly. This is indicated by the second x-axis having

a different scale shift with the positioner stopping at 0. This mode may be

used for the initial setup of a system to define the absolute scale (respec-

tively to define the zero position of the scale). Once defined, the default

referencing mode may be used in later sessions to restore the same scale.

Inverted Start Direction (with auto-zero, reference mode 0b00000101)

t

x

0

0

x

Same as the default referencing, with the difference that the positioner will

start to move in backward direction and look for two reference marks.

In this example the positioner passes over the first reference mark, but en-

counters a physical end stop before finding the secondmark. The positioner

will automatically reverse its search direction at the end stop and restart

looking for a first reference mark.

As in the previous section please note that if the positioner should encounter

a second end stop then the reference algorithm will be aborted. The posi-

tioner is stopped and an error event is generated. Reasons for this situation may be a mechanical

or electrical defect (the controller does not register the reference signal for some reason) or the

47MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

available travel range does not cover two reference marks (e.g. the positioner has bumped against

an obstacle).

Reverse Direction (with auto-zero, reference mode 0b00000110)

t

x

0

x

0

In this mode the positioner will start to move in forward (positive) direction

and look for a reference mark. When the positioner has found the first

reference mark it will reverse the movement direction and look for a second

mark. As soon as the positioner has passed over the second reference mark

the internal position will be updated (in this case set to 0 due to the auto-

zero flag). This is indicated by the second x-axis having a different scale

shift.

As in the previous examples the small overshoot represents the reaction

time of the positioner stopping. The amount of the overshoot depends on factors like the velocity

with which the referencing is performed, the mass that is mounted on the positioner or a possibly

configured acceleration control (in which case it takes some time to decelerate the positioner).

The positioner will turn around andmove to the exact location of the second referencemark. After

this the referencing is complete.

This mode may further reduce the distance traveled by the positioner to determine its physical

position.

2.8.4 Positioners With Endstop Reference

This section describes the behavior while referencing positioners with an endstop reference type

in more detail. The general principle is to move the positioner towards one end of the travel range

until a mechanical endstop is detected. The sensor signals are then used to align the position to

the reference position with high repeat accuracy.

For these types of positioners the physical measuring scale is defined such that the zero posi-

tion lies near the mechanical end stop that is used for referencing. Note that the scale therefore

depends on the Safe Direction as well as the Logical Scale Inversion setting.

Positioners with an endstop reference type use the additional Safe Direction property to define

the direction of the referencing movement instead of the start direction bit of the Referencing

Options property.

All Referencing Options flags except the auto-zero flag are ignored when referencing towards an

endstop.

NOTICE
Note that the end stop must be calibrated with SA_CTL_Calibrate before it

can be properly used as a reference point.

48MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Default Behavior (with auto-zero, reference mode 0b0000100)

t

x

0

x

0

In this mode the positioner will start moving towards the configured Safe

Direction and look for a mechanical end stop. In this example the Safe Di-

rection is assumed to be set to forward (positive) direction.

Once the positioner has found the mechanical end stop it will move a short

distance away from the end stop to find the exact reference using the posi-

tion that was determined while calibrating the endstop.

As in the previous section the images on the right side illustrate the behavior

of an example positioner that is being referenced. The vertical x-axis repre-

sents the travel range of the positioner. The square brackets indicate mechanical end stops.

In the examples the positioner starts at position 0 and the physical position is unknown (red line).

Once the positioner is referenced the physical position will become known (green line). The auto-

zero flag is assumed to be set so the position will be set to zero once the physical position has

been determined.

2.8.5 Shifting the Measuring Scale

The physical measuring scale of a positioner is fix and cannot be changed. However, the MCS2

controller uses a logical measuring scale when calculating positions. The logical measuring scale

may be shifted and/or inverted by the user so that the controller returns a desired position value

at a certain physical position.

The relation between the physical and the logical scale is defined by two parameters. The offset

value (which represents the shift) and the inversion value (which inverts the count direction) of the

logical scale relative to the physical scale. The default value of the offset and the inversion is zero

which makes the physical and the logical scale identical.

There are two methods to modify the offset value:

• Writing the Position property sets the offset implicitly by shifting the logical scale so that the

current position equals the desired value.

• Writing the Logical Scale Offset property sets the offset explicitly and the current position

will have a value that reflects the new scale shift.

The inversion value may be set by writing the Logical Scale Inversion property.

The offset and inversion values are stored in non-volatile memory. Once it is configured you only

need to call the SA_CTL_Reference function to restore your settings on future power-ups.

Note: The behavior of the system when writing the Position property differs slightly depending on

whether the physical position is known or not. When the physical position is unknown then writing

the Position property will not update the scale offset value in the non-volatile memory. Likewise,

writing the Logical Scale Offset property will have no immediate effect on the values read from the

Position property. The following table summarizes the behavior.

49MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Physical position is known Physical position is unknown

Set Position Set Logical Scale Set Position Set Logical Scale

Offset value is writ-

ten to non-volatile

memory

yes yes no yes

Function call has im-

mediate effect on po-

sition values

yes yes yes no

2.9 Device Monitoring

The MCS2 has several features to monitor the state of the device. Monitoring can be done by

polling specific properties or by listening to events the device generates.

The Device State, Module State and Channel State properties hold state flags which can be checked

to detect a failure of a movement command or a malfunction of the device. See section 2.10 "State

Flags" for the meaning of the flags.

2.9.1 Movement Monitoring

Section 2.7.7 "Movement Feedback" describes the possibilities to obtainmovement feedback by

either polling the Channel State property, reading the Channel Error property to determine the

reason for a movement failure or listening to the SA_CTL_EVENT_MOVEMENT_FINISHED event.

The following error of a positioner for closed-loop movements can be monitored by reading the

Following Error property. An additional limit property may be set. In case the following error

exceeds the configured limit a SA_CTL_EVENT_FOLLOWING_ERR_LIMIT event is generated and

the movement may be stopped automatically. See section 2.14 "Following Error Detection" for the

configuration of this feature.

2.9.2 Magnetic Driver Overload Protection

The Magnetic Driver monitors the output current of each channel to detect an overload condition

of the positioner. This prevents thermal overheating and potential damage of the positioners coils,

isolation and permanent magnets.

The following limiting parameters are defined for every positioner type:

• the continuous current limit

• the maximum (intermittent) current limit

• the permitted time constant

50MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

The continuous current limit specifies the highest current level the driver can apply continuously

without overheating the positioner.

The maximum (intermittent) current limit specifies the highest current level the driver can

apply for a specified permitted time. (Typically in the range of a few seconds.) This higher limit

makes it possible to improve the performance of a movement by using a higher current for a short

time, e.g. to accelerate and decelerate the positioner.

The MCS2 implements the I2T protection which does not require additional temperature sensors

in the positioners. Whenever the control-loop is enabled the channel continuously integrates the

square of the current. Because resistive heat generation is proportional to the square of the cur-

rent this method gives a reasonable representation of the generated thermal load of the posi-

tioner. The difference between the squared present current and the squared continuous current

is accumulated. If this sum exceeds a specified limit the overload protection triggers and the

control-loop is disabled to protect the positioner. This is indicated by the

SA_CTL_CH_STATE_BIT_POSITIONER_OVERLOAD Channel State bit. A running movement is

aborted and a SA_CTL_EVENT_MOVEMENT_FINISHED event with its parameter set to

SA_CTL_ERROR_POSITIONER_OVERLOAD is generated.

The overload flag is cleared automatically after the current sumhas dropped again under a defined

level. After this a new movement may be commanded or the SA_CTL_Stop command may be

used to enter the holding state.

The present load level may be read in percent with the Motor Load property. This may be useful

to estimate the motor load while performing movements before the overload protection triggers

and disables the control-loop. In case the motor load reaches a level close to 100 % the number

of movements per time, the movement acceleration and/or the mechanical load attached to the

positioner should be reduced.

WARNING
Magnetic driven positioners are not self-locking. Disabling the control-loop re-

moves any holding force from the positioner. Make sure not to damage any

equipment when the positioner changes its position unintentionally!

2.9.3 Hardware Monitoring

The MCS2 offers limited hardware monitoring of critical components. This includes the tempera-

ture of the internal amplifiers and the voltage of the power supply.

Temperature

If an over-temperature condition is detected on a channel then the corresponding amplifier is

shut down automatically to protect it from being damaged. This is indicated by the Channel State

bit SA_CTL_CH_STATE_BIT_OVER_TEMPERATURE.

Additionally, the SA_CTL_MOD_STATE_BIT_OVER_TEMPERATURE flag of the Module State is set

if any channel of the module shows the over-temperature flag (logicalOR of the channel flags) and

51MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

a SA_CTL_EVENT_OVER_TEMPERATURE event is generated to inform the user. Positioner move-

ments in this state are not permitted. Once the amplifier has cooled down to a safe temperature

the over-temperature flags are cleared and the channel may then be used again normally.

The diagnostic properties Channel Temperature and Bus Module Temperature may be used to

read the current temperatures. (See there for more information.)

Cooling Fan

The SA_CTL_MOD_STATE_BIT_FAN_FAILURE flag of the Module State property indicates a fan

failure for MCS2 devices which are equipped with a cooling fan.1 This may be a blockage or dam-

age of the fan. A SA_CTL_EVENT_FAN_FAILURE_STATE_CHANGED event is generated to inform

the user. Note that the fan is temperature-controlled and thus disabled most of the time as long

as the device temperature is within the normal range.

Power Supply

The SA_CTL_MOD_STATE_BIT_POWER_SUPPLY_OVERLOAD flag of the Module State property

indicates a power supply overload. A SA_CTL_EVENT_POWER_SUPPLY_OVERLOAD event is gen-

erated to inform the user. Note that an overloadmay be caused by a defective positioner or wiring.

Remove the positioners and check for any damages. Once the failure is eliminated, the overload

flag is cleared automatically.

The SA_CTL_MOD_STATE_BIT_POWER_SUPPLY_FAILURE flag of the Module State property in-

dicates a power supply failure. A SA_CTL_EVENT_POWER_SUPPLY_FAILURE event is gener-

ated to inform the user. Note that this failure points to a hardware damage. The controller should

be powered down and checked by SmarAct in this case.

Positioner Faults

The Magnetic Driver may detect a defective positioner. A positioner fault is indicated by the Chan-

nel State bit SA_CTL_CH_STATE_BIT_POSITIONER_FAULT. In case of a fault the amplifier is

disabled immediately. The Positioner Fault Reason property may then be read to determine the

fault reason. The positioner must be disconnected from the controller and should be checked by

SmarAct in this case.

2.10 State Flags

2.10.1 Device State Flags

The device state may be read from the Device State property. The value is a bit field containing

independent flags. Undefined flags are reserved for future use. Therefore, the user software

should not rely on a static value of undefined flags. The following flags are defined:

1The fan failure detection is currently only available for Magnetic Driver.

52MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Bit C-Definition Mask

0 SA_CTL_DEV_STATE_BIT_HM_PRESENT 0x00000001

1 SA_CTL_DEV_STATE_BIT_MOVEMENT_LOCKED 0x00000002

8 SA_CTL_DEV_STATE_BIT_INTERNAL_COMM_FAILURE 0x00000100

12 SA_CTL_DEV_STATE_BIT_IS_STREAMING 0x00001000

HM Present (bit 0)

This flag indicates that a hand control module is attached to the device.

Movement Locked (bit 1)

This flag indicates that the device is locked due to an emergency stop condition. (see section 2.20.2

"Emergency Stop Mode")

Internal Communication Failure (bit 8)

This flag indicates that an internal communication failure has occurred. This suggests a hardware

defect. Please contact SmarAct.

Is Streaming (bit 12)

This flag indicates that the device is currently performing a trajectory stream (see section 2.18

"Trajectory Streaming").

2.10.2 Module State Flags

The module state may be read from the Module State property. The value is a bit field containing

independent flags. Undefined flags are reserved for future use. Therefore, the user software

should not rely on a static value of undefined flags. The following flags are defined:

53MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Bit C-Definition Mask

0 SA_CTL_MOD_STATE_BIT_SM_PRESENT 0x00000001

1 SA_CTL_MOD_STATE_BIT_BOOSTER_PRESENT 0x00000002

2 SA_CTL_MOD_STATE_BIT_ADJUSTMENT_ACTIVE 0x00000004

3 SA_CTL_MOD_STATE_BIT_IOM_PRESENT 0x00000008

8 SA_CTL_MOD_STATE_BIT_INTERNAL_COMM_FAILURE 0x00000100

11 SA_CTL_MOD_STATE_BIT_FAN_FAILURE* 0x00000800

12 SA_CTL_MOD_STATE_BIT_POWER_SUPPLY_FAILURE 0x00001000

12 SA_CTL_MOD_STATE_BIT_HIGH_VOLTAGE_FAILURE1 0x00001000

13 SA_CTL_MOD_STATE_BIT_POWER_SUPPLY_OVERLOAD 0x00002000

13 SA_CTL_MOD_STATE_BIT_HIGH_VOLTAGE_OVERLOAD1 0x00002000

14 SA_CTL_MOD_STATE_BIT_OVER_TEMPERATURE 0x00004000

SM Present (bit 0)

This flag indicates whether a Sensor Module is currently attached to the Driver Module.

Booster Present (bit 1)

This flag indicates whether the Driver Module is equipped with a booster for high current signal

output.

Adjustment Active (bit 2)

This flag indicates whether the module is performing an adjustment for the SmarAct PicoScale

Laserinterferometer.

I/O Module Present (bit 3)

This flag indicates whether the Driver Module is equipped with an I/O Module.

Internal Communication Failure (bit 8)

This flag indicates that an internal communication error has occurred. This suggests a hardware

defect. Please contact SmarAct.

*This module state bit is only valid for Magnetic Driver.
1This definition is deprecated and may be removed in future releases.

54MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Fan Failure (bit 11)

This flag indicates that the module detected a failure of the cooling fan. Check for a blockage of

the fan and make sure that it can spin freely.

High Voltage / Power Supply Failure (bit 12)

This flag indicates that the module detected a power supply failure. This suggests a hardware

defect. Please contact SmarAct.

High Voltage / Power Supply Overload (bit 13)

This flag indicates that the module detected a power supply overload condition. For Stick-Slip

Piezo Driver this can have two main reasons:

• A short circuit between one of the HV+ signals with HV- (or shield). Removing the short circuit

will automatically clear the flag again.

• Driving a positioner continuously at high frequencies for too long may overload the power

amplifier. Stopping positioners and letting the amplifier cool down will reset the flag.

Over Temperature (bit 14)

This flag indicates that the module detected an over temperature condition. This will shut down

the power amplifier to prevent thermal damage. As soon as the temperature drops to a non-

critical level the amplifier is enabled again and the flag is cleared.

Note that this flag is rarely raised under normal conditions and may indicate improper cooling,

such as a fan failure.

2.10.3 Channel State Flags

The channel state may be read from the Channel State property. The value is a bit field containing

independent flags. Undefined flags are reserved for future use. Therefore, the user software

should not rely on a static value of undefined flags. The following flags are defined:

55MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Bit C-Definition Mask

0 SA_CTL_CH_STATE_BIT_ACTIVELY_MOVING 0x00000001

1 SA_CTL_CH_STATE_BIT_CLOSED_LOOP_ACTIVE 0x00000002

2 SA_CTL_CH_STATE_BIT_CALIBRATING 0x00000004

3 SA_CTL_CH_STATE_BIT_REFERENCING 0x00000008

4 SA_CTL_CH_STATE_BIT_MOVE_DELAYED 0x00000010

5 SA_CTL_CH_STATE_BIT_SENSOR_PRESENT 0x00000020

6 SA_CTL_CH_STATE_BIT_IS_CALIBRATED 0x00000040

7 SA_CTL_CH_STATE_BIT_IS_REFERENCED 0x00000080

8 SA_CTL_CH_STATE_BIT_END_STOP_REACHED 0x00000100

9 SA_CTL_CH_STATE_BIT_RANGE_LIMIT_REACHED 0x00000200

10 SA_CTL_CH_STATE_BIT_FOLLOWING_LIMIT_REACHED 0x00000400

11 SA_CTL_CH_STATE_BIT_MOVEMENT_FAILED 0x00000800

12 SA_CTL_CH_STATE_BIT_IS_STREAMING 0x00001000

13 SA_CTL_CH_STATE_BIT_POSITIONER_OVERLOAD* 0x00002000

14 SA_CTL_CH_STATE_BIT_OVER_TEMPERATURE 0x00004000

15 SA_CTL_CH_STATE_BIT_REFERENCE_MARK 0x00008000

16 SA_CTL_CH_STATE_BIT_IS_PHASED* 0x00010000

17 SA_CTL_CH_STATE_BIT_POSITIONER_FAULT* 0x00020000

18 SA_CTL_CH_STATE_BIT_AMPLIFIER_ENABLED 0x00040000

18 SA_CTL_CH_STATE_BIT_AMPLIFIER_ENABLED 0x00040000

Actively Moving (bit 0)

The channel is actively moving the positioner (open-loop or closed-loop).

Closed Loop Active (bit 1)

The channel is in closed-loop operation using sensor feedback (moving or holding the position).

Calibrating (bit 2)

The channel is busy performing a calibration sequence. (See section 2.7.1 "Calibrating".)

*This channel state bit is only valid for Magnetic Driver.

56MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Referencing (bit 3)

The channel is busy performing a find reference sequence. (See section 2.7.2 "Referencing".)

Move Delayed (bit 4)

The channel is waiting for the sensor to power-up before executing the movement command. This

flag may be active if the sensor is operated in power save mode.

Sensor Present (bit 5)

A positioner with integrated sensor is attached to the channel. This indicates whether closed-loop

movements may be performed.

Is Calibrated (bit 6)

The channel has valid signal correction calibration data for the configured positioner type. This

flag is cleared when the positioner type is changed. It is set after a signal correction calibration

sequence finished successfully. Note that physically different positioners of the same type require

distinct calibration data. For positioners without SmarAct Positioner ID System the channel is not

able to detect the change of the positioner. Consequently this flag will remain. Nonetheless the

calibration sequence must be repeated once for the channel. (See section 2.7.1 "Calibrating".)

Is Referenced (bit 7)

The channel "knows" its physical (absolute) position. After a power-up the physical position is

unknown. After the reference mark has been found by calling SA_CTL_Reference the physical

position becomes known. (See section 2.7.2 "Referencing".) Detaching the positioner clears the

flag.

End Stop Reached (bit 8)

The target position of a closed-loop movement command could not be reached because a me-

chanical end stop was detected. The positioner was stopped. The flag is cleared when a new

movement command respectively stop command is issued. (See section 2.13 "Endstop Detec-

tion".)

Range Limit Reached (bit 9)

The positioner left the software configured range limit. The positioner was stopped. The flag is

cleared when a new movement command respectively stop command is issued. (See section 2.15

"Software Range Limit".)

57MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Following Limit Reached (bit 10)

The positioners following error exceeded the configured limit. The flag is cleared when a new

movement command respectively stop command is issued. (See section 2.14 "Following Error

Detection".)

Movement Failed (bit 11)

The last movement command failed. The Channel Error property may be read to determine the

reason for the error.

Is Streaming (bit 12)

The channel is currently participating in a trajectory stream. As long as this flag is set the channel is

unavailable for movement or configuration commands. (See section 2.18 "Trajectory Streaming".)

Positioner Overload (bit 13)

The channel detected an overload condition of the positioner. This will disable the control-loop

to prevent the positioner from overheating. As soon as the internal detection level drops to a

non-critical value the flag is cleared. (See section 2.9.1 "Movement Monitoring".)

Over Temperature (bit 14)

The channel detected an over temperature condition. This will shut down the power amplifier to

prevent thermal damage. As soon as the temperature drops to a non-critical level the amplifier is

enabled again and the flag is cleared.

Note that this flag is rarely raised under normal conditions and may indicate improper cooling,

such as a fan failure.

Reference Mark (bit 15)

This flag reflects the state of the reference mark signal of the sensor.

Is Phased (bit 16)*

The channel has valid data for the commutation of a magnetic driven positioner. A channel must

be phased in order to be able to move a positioner. (See section 2.22 "Phasing of Magnetic Driven

Positioners".)

58MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Positioner Fault (bit 17)*

The channel detected a positioner fault. (See section 2.9.3 "Hardware Monitoring".)

Amplifier Enabled (bit 18)

This flag reflects the state of the amplifier. (See Amplifier Enabled property.)

2.11 Sensor Power Modes

In order for a positioner to track its position, its sensor needs to be supplied with power. How-

ever, since this generates heat (causing drift effects), it might be desirable to disable the sensors

in some situations (especially in temperature critical environments). For this, there are three dif-

ferent modes of operation for the sensor, which may be configured individually for each channel

with the Sensor Power Mode property. The following modes are available:

• Disabled In this mode the power supply of the sensor is turned off. This avoids the gener-

ation of heat by the sensor. Movement commands that require sensor feed back (such as

closed-loop movements, referencing or calibrating) will not be executed. Instead, the gen-

erated SA_CTL_EVENT_MOVEMENT_FINISHED event holds an error code informing about

the sensor state.

Besides avoiding heat generation this mode may also be useful if the light that is emitted

by the sensor interferes with other components of your setup (e.g. detectors inside an SEM

chamber).

• Enabled In this mode the sensor is supplied with power continuously. All movement com-

mands are executed normally.

• PowerSave*If set to thismode the power supply of the sensor will be handled by the channel

automatically. If the positioner is idle the sensor will be offline most of the time, avoiding

unnecessary heat generation. A movement command (open-loop or closed-loop) will cause

the channel to activate the sensor before the movement is started. Since it takes a few

milliseconds to power-up the sensor, the movement will be delayed. The Channel State bit

SA_CTL_CH_STATE_BIT_MOVE_DELAYED is set during this time.

Figure 2.6 illustrates the different sensor modes and shows when the sensor is supplied with

power.

In this example the sensor mode is initially set to enabled. The sensor is continuously supplied

with power. At time t1 the sensor mode is switched to power save. In this mode the channel starts

to pulse the power supply of the sensor to keep the heat generation low. At time t2 a movement

command is issued, which requires the sensor to be online in order to keep track of the current

position. Note that the sensor mode stays unchanged during this time. After the movement has

finished (t3) an additional delay is started. While this delay the sensor stays online. (See the Sensor

Power Save Delay property.) As soon as the delay time has elapsed (t4) the channel will start to

*This channel state bit is only valid for Magnetic Driver.
*The power save mode is only available for Stick-Slip Piezo Driver.

59MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

enabled power save disabled
Sensor
Mode

Sensor
Power
Supply

tt1 t2 t4 t5

on

off

t3

Figure 2.6: Sensor Modes

pulse the power supply again. At time t5 the sensor mode is switched to disabled, in which the

power supply is turned off continuously.

NOTICE
When in PowerSave or Disabled mode the positioner should not be moved by

external means (e.g. by hand)! Since in these modes the power supply of the

sensor is off most of the time or even continuously, the controller is not able to

detect suchmovements. As a consequence the position data will become invalid.

Furthermore, no error can be generated.

Stick-Slip Piezo Driver

Note that the sensor must be in Enabled or PowerSave mode for the sensor-present detection to

be active. Accordingly, the Channel State bit SA_CTL_CH_STATE_BIT_SENSOR_PRESENT is not

updated as long as the sensor is Disabled.

Magnetic Driver

The sensor-present detection is active in Disabledmode too. When setting the Sensor Power Mode

to Disabled the control-loop and the amplifier is disabled and the phasing becomes invalid. See

section 2.22 "Phasing of Magnetic Driven Positioners" for more information.

WARNING
Magnetic driven positioners are not self-locking. Disabling the control-loop re-

moves any holding force from the positioner. Make sure not to damage any

equipment when the positioner changes its position unintentionally!

2.12 PicoScale Sensor Module

TheMCS2 supports the SmarAct PicoScale laser interferometer as a high precision sensor module.

This section explains the differences when using a PicoScale instead of the MCS2 sensor module.

60MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

For a detailed description and setup of the PicoScale refer to the PicoScale User Manual.

For connecting the PicoScale to the MCS2 a special adapter cable (MCS2-A-PS-CABLE-1.5M-1.5M)

is required. The adapter cable connects to the MCS2 and splits the high voltage output to three

connections for positioners and forwards the data connection to the PicoScale.

When the PicoScale is connected to the MCS2, it is reported as a connected sensor module in the

Module State Flags. Since the MCS2 only knows the sensor present flag in the Channel State Flags,

but the PicoScale uses a number of different flags to indicate the system state, these flags are

merged in theMCS2 context. For the sensor present flag to become active the following conditions

must be met:

• System stable

• Channel enabled

• Channel data valid

• Beam not interrupted

For most of these flags to become active the channel needs to be adjusted. The adjustment can

be performed using the PicoScale GUI or the MCS2 hand control module.

By default the MCS2 will use the PicoScale position data source as input for the control-loop.

Alternatively, the calculation system can be selected as the input using the Sensor Input Select

property. Note that the mapping between PicoScale calculation systems and MCS2 channels is

static. The output of calculation system 0 of the PicoScale is used as input for channel 0 of the

MCS2. Accordingly, calcSys 1 is used for channel 1 and calcSys 2 is used for channel 2.

When using the calculation system as input the conditions for the sensor present flag are as fol-

lows:

• System stable

• Calculation system data not interrupted

2.13 Endstop Detection

SmarAct positioners do not require any physical limit switches to detect the end of the travel range

while moving. The MCS2 features a software-driven endstop detection. If a mechanical blockage

is detected while performing a closed-loop movement the channel is stopped.

A SA_CTL_EVENT_MOVEMENT_FINISHED event with its parameter set to

SA_CTL_ERROR_END_STOP_REACHED is generated and the Channel State bits:

• SA_CTL_CH_STATE_BIT_END_STOP_REACHED and

• SA_CTL_CH_STATE_BIT_MOVEMENT_FAILED

will be set to one. The flags remain set until a newmovement (or a SA_CTL_Stop) is commanded.

Note that when using auxiliary inputs as control-loop feedback it may be necessary to disable

the endstop detection by setting the Positioner ESD Distance Threshold property to zero. See

section 2.19.5 "Using Analog Inputs as Control-Loop Feedback" for more information.

61MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Stick-Slip Piezo Driver

The endstop detection is active while performing a closed-loop movement and while holding

the position. If an endstop is detected the channel enters the stopped state and the control-

loop is disabled. If a positioner is moved away from the target position by external means and

the channel is not able to hold the target position for a longer time an endstop is triggered. A

SA_CTL_EVENT_HOLDING_ABORTED event is generated to notify about this and the channel is

stopped.

Magnetic Driver

The endstop detection is active while performing a movement but not while holding the position.

If an endstop is detected the channel enters the holding state to stop the movement. Furthermore

the maximum output current is reduced to the permitted continuous current value. This means

that the holding force of the positioner is reduced from then on but with the benefit that an ongo-

ing blockage will not trigger the overload detection. This would otherwise disable the control-loop

and subsequently remove the holding force from the positioner. A new movement command

reverts the maximum current to its intermittent value.

If it is desired to abort the control-loop on a position deviation in the holding state the following

error detection may be used. See section 2.14 "Following Error Detection" for more information.

2.14 Following Error Detection

The following error detection feature may be used to inform the application if a commanded tra-

jectory cannot be followed by a positioner precisely enough. The following error is, at a given time,

the difference between the target position and the actual position while performing closed-loop

movements. The positioner will always have a non-zero following error but the control-loop is

tuned to reduce this error to its minimum. To enable the detection:

• The Following Error Limit property must be set to a non-zero value.

• The velocity control must be enabled (see Move Velocity).

The limit value is given in pm for linear positioners and in n° for rotary positioners. By default a

following error is reported only without taking any further actions. As soon as the configured limit

is exceeded during a closed-loop movement a SA_CTL_EVENT_FOLLOWING_ERR_LIMIT event

is generated and the SA_CTL_CH_STATE_BIT_FOLLOWING_LIMIT_REACHED Channel State bit

will be set to one. The flag remains set until a newmovement (or a SA_CTL_Stop) is commanded.

Optionally the movement may be stopped automatically if the limit is exceeded.

The SA_CTL_POS_CTRL_OPT_BIT_STOP_ON_FOLLOWING_ERR bit of the Positioner Control Op-

tions property must be set to one to stop the movement. In this case two events are generated.

Firstly, the above mentioned SA_CTL_EVENT_FOLLOWING_ERR_LIMIT, secondly a

SA_CTL_EVENT_MOVEMENT_FINISHED event. The latter will have its parameter set to

SA_CTL_ERROR_FOLLOWING_ERR_LIMIT. Additionally the Channel State bits:

• SA_CTL_CH_STATE_BIT_FOLLOWING_LIMIT_REACHED and

• SA_CTL_CH_STATE_BIT_MOVEMENT_FAILED

62MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

will be set to one. The flags remain set until a newmovement (or a SA_CTL_Stop) is commanded.

Note that the detection is not active during referencing movements.

Stick-Slip Piezo Driver

The following error detection is active while performing a movement and while holding the posi-

tion. If the detection triggers (and the ’stop on following error’ positioner control option is enabled)

the channel enters the stopped state and the control-loop is disabled.

Magnetic Driver

The following error detection is active while performing a movement and while holding the posi-

tion. Assuming that the ’stop on following error’ positioner control option is enabled, the behavior

is sightly different depending on the current state: While moving the channel enters the hold-

ing state to stop the movement if the detection triggers. If it triggers while holding the position

(e.g. if the positioner is moved by external means) the channel tries to hold the position but the

maximum output current is reduced to the permitted continuous current value. This means that

the holding force of the positioner is reduced from then on but with the benefit that an ongoing

blockage will not trigger the overload detection. This would otherwise disable the control-loop and

subsequently remove the holding force from the positioner. A new movement command reverts

the maximum current to its intermittent value.

The additional SA_CTL_POS_CTRL_OPT_BIT_CL_DIS_ON_FOLLOWING_ERR bit of the Positioner

Control Options property may be used to disable the control-loop instead of just stopping the

movement. This option has a higher priority than the stop option if both options are enabled.

Note that the amplifier is not disabled in this case. This means that any new movement or stop

command will automatically re-enable the control-loop.

WARNING
Magnetic driven positioners are not self-locking. Disabling the control-loop re-

moves any holding force from the positioner. Make sure not to damage any

equipment when the positioner changes its position unintentionally!

2.15 Software Range Limit

While linear positioners have a limited physical travel range it might be useful to further limit this

range if the positioner must not be allowed to move beyond a certain point. Rotary positioners

usually have no physical end stops, but e.g. wiring may require to limit the rotation here as well.

For these situations the MCS2 controller offers to limit the travel range of a positioner by software.

By default no range limit is set. To enable the range checks, the Range Limit Max property must be

set to a higher value than the Range Limit Min property. Once the limits are set the positioner will

63MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

not move beyond the boundaries of the range limit. This affects all movements except scan move-

ments. If a movement command is issued that move the positioner beyond the defined limit then

the positioner is stopped. A SA_CTL_EVENT_MOVEMENT_FINISHED event with its parameter set

to SA_CTL_ERROR_RANGE_LIMIT_REACHED is generated and the Channel State bits:

• SA_CTL_CH_STATE_BIT_RANGE_LIMIT_REACHED and

• SA_CTL_CH_STATE_BIT_MOVEMENT_FAILED

will be set to one. The flags remain set until a newmovement (or a SA_CTL_Stop) is commanded.

Further movements are only allowed if they move the positioner in the direction pointing back

inside the range limit. This also applies if the positioner has been moved outside the defined

range limit by external means.

Note that when commanding the positioner towards a limit with enabled acceleration control (see

Move Acceleration property) the positioner is decelerated to zero velocity in a way that it comes to

a halt on the specified limit position.

Both the minimum and maximum position of the range limit behave similarly to a physical end

stop. For example, the SA_CTL_Reference command will reverse its movement direction while

looking for the referencemark if a range limit boundary is reached. If the referencemark is located

outside the range limit then it will not be found.

It is possible to define the default values for the range limits at device startup, e.g. for applications

where no dedicated control software is used. This may be useful e.g. for stand-alone operation

with the hand control module. Set the Default Range Limit Min and Default Range Limit Max

properties to specify the startup defaults.

Please note the following restrictions:

• The Range Limit Min and Range Limit Max properties are not saved to non-volatile mem-

ory and must be configured in each session. (The default values at device startup may be

configured with the Default Range Limit Min and Default Range Limit Max properties.)

• The range limits are not checked while performing the SA_CTL_Calibrate function for

the signal correction calibration.

• The range limit has a limited accuracy. The positioner may pass over the boundary by a

few micro meters resp. milli degrees if no acceleration control is used for the movement.

Therefore, the range should be defined with sufficient tolerance in this case.

NOTICE
Setting the Position (as well as the Logical Scale Offset and Logical Scale Inver-

sion properties) does not automatically adjust the software range limit accord-

ingly. This means that shifting the measurement scale of the positioner with

these commands will also shift the physical position of the software range limit.

Therefore, care should be taken when working with these commands.

64MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

2.16 Stop Broadcasting

This feature can be used to broadcast a stop command to all channels on the MCS2 controller

when a channel

• detects a mechanical end stop (see section 2.13 "Endstop Detection"),

• reaches a software range limit (see section 2.15 "Software Range Limit") or

• exceeds a following error limit (see section 2.14 "Following Error Detection").

It is typically useful when multiple channels are moving simultaneously and one of the above

conditions on one channel should cause a halt on all other channels. The channel that caused

the broadcast stop generates a SA_CTL_EVENT_MOVEMENT_FINISHED event with its parameter

holding the reason for the stop. (SA_CTL_ERROR_END_STOP_REACHED,

SA_CTL_ERROR_RANGE_LIMIT_REACHED or SA_CTL_ERROR_FOLLOWING_ERR_LIMIT)

All other (currently moving) channels will be stopped and generate a

SA_CTL_EVENT_MOVEMENT_FINISHED event with its parameter set to

SA_CTL_ERROR_ABORTED.

NOTICE
A channel’s behavior for a broadcast stop is the same as when executing a sin-

gle SA_CTL_Stop command. Thus channels moving with acceleration control

active may not come to halt immediately.

2.16.1 Stop Broadcast Configuration

The Broadcast Stop Options property defines the behavior of the broadcast stop feature. It holds

a bit mask with the following mode bits:

Bit Name Short Description

0 End Stop Reached Broadcast stop command if a mechanical end stop was

detected.

1 Range Limit Reached Broadcast stop command if a range limit was reached.

2 Following Limit Reached* Broadcast stop command if a following error limit was ex-

ceeded.

3 .. 31 Reserved These bits are reserved for future use. Should be set to

zero.

*Note that the SA_CTL_POS_CTRL_OPT_BIT_STOP_ON_FOLLOWING_ERR bit of the Positioner

Control Options property must be set to one to stop the movement and subsequently generate a

broadcast stop on a following error limit.

65MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Example

The example code below configures the device to issue a broadcast stop if channel 0 reaches an

end stop or a Software Range Limit (±2mm).

SA_CTL_Result_t result;

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_RANGE_LIMIT_MIN, -2e9);

if (result) { /* handle error, abort */ }

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_RANGE_LIMIT_MAX, 2e9);

if (result) { /* handle error, abort */ }

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_BROADCAST_STOP_OPTIONS,

(SA_CTL_STOP_OPT_BIT_END_STOP_REACHED |

SA_CTL_STOP_OPT_BIT_RANGE_LIMIT_REACHED)

);

if (result) { /* handle error, abort */ }

2.17 Command Groups

When issuing movement or configuration commands they usually target a single channel of the

device. However, when trying to move several channels synchronously communication delays

induce a time offset of the resulting movements.

Command groups offer the possibility to define an atomic group of commands that is executed

synchronously. In addition, a command group may not only be triggered via software, but alter-

natively via an external trigger.

To define a command group simply surround the commands that should be grouped with calls to

the SA_CTL_OpenCommandGroup and SA_CTL_CloseCommandGroup functions and pass the

transmit handle received from the SA_CTL_OpenCommandGroup function to all commands to be

grouped.

For example, consider the code sequence below that configures two channels with the closed-loop

absolute move mode and then moves both channels to some target position. (For simplicity the

function return values are not handled in this example.)

SA_CTL_RequestWriteProperty_i32(

dHandle,

0,

SA_CTL_PKEY_MOVE_MODE,

66MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

SA_CTL_MOVE_MODE_CL_ABSOLUTE,

&rID0,

0

);

SA_CTL_RequestWriteProperty_i32(

dHandle,

1,

SA_CTL_PKEY_MOVE_MODE,

SA_CTL_MOVE_MODE_CL_ABSOLUTE,

&rID1,

0

);

SA_CTL_Move(dHandle,0,1000000,0);

SA_CTL_Move(dHandle,1,2000000,0);

SA_CTL_WaitForWrite(dHandle,rID0);

SA_CTL_WaitForWrite(dHandle,rID1);

The next code snippet shows the same example, but the commands are put into a command

group (changes are colored).

SA_CTL_TransmitHandle_t tHandle;

SA_CTL_OpenCommandGroup(dHandle,&tHandle

,SA_CTL_CMD_GROUP_TRIGGER_MODE_DIRECT);

SA_CTL_RequestWriteProperty_i32(

dHandle,

0,

SA_CTL_PKEY_MOVE_MODE,

SA_CTL_MOVE_MODE_CL_ABSOLUTE,

&rID0,

tHandle

);

SA_CTL_RequestWriteProperty_i32(

dHandle,

1,

SA_CTL_PKEY_MOVE_MODE,

SA_CTL_MOVE_MODE_CL_ABSOLUTE,

&rID1,

tHandle

);

SA_CTL_Move(dHandle,0,1000000,tHandle);

SA_CTL_Move(dHandle,1,2000000,tHandle);

SA_CTL_CloseCommandGroup(dHandle,tHandle);

SA_CTL_WaitForWrite(dHandle,rID0);

SA_CTL_WaitForWrite(dHandle,rID1);

As a result the commands are treated as one command and the movements of both channels

start synchronously (in this case as soon as the command group is closed, since the direct trigger

mode is used). A SA_CTL_EVENT_CMD_GROUP_TRIGGERED event is generated once the group

was triggered.

One important thing to notice is that the SA_CTL_WaitForWrite function calls must be issued

after the command group was closed. Otherwise the function calls will block. The same applies to

67MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

commands that read properties from the device: put the SA_CTL_RequestReadProperty calls

into the command group, but issue e.g. SA_CTL_ReadProperty_i32 calls after the group close.

Note that synchronous property accesses cannot be put into a command group. Only the following

commandsmay be added to command groups by passing the transmit handle to the function call:

• SA_CTL_RequestReadProperty

• SA_CTL_RequestWriteProperty_i32

• SA_CTL_RequestWriteProperty_i64

• SA_CTL_RequestWriteProperty_s

• SA_CTL_Calibrate

• SA_CTL_Reference

• SA_CTL_Move

• SA_CTL_Stop

In addition note that not all properties may be added to command groups. (E.g. device proper-

ties can never be used.) If a property is group-able or not is indicated in the detailed property

description (See chapter 4 "Property Reference").

A maximum of 32 command groups may be opened simultaneously. If the limit is reached the

SA_CTL_OpenCommandGroup functionwill return a SA_CTL_ERROR_BUFFER_LIMIT_REACHED

error.

Themaximum number of commands per group depends on the number of opened groups and the

distribution of commands to the modules. Eachmodule has one queue with 32 command slots for

all commands to this module and its channels. If this limit is reached on one of the modules the

execution of the group is aborted and a SA_CTL_ERROR_BUFFER_OVERFLOW error is reported

with the SA_CTL_EVENT_CMD_GROUP_TRIGGERED event which is generated after closing resp.

triggering the command group.

2.17.1 Command Groups vs. Output Buffer

Output buffer (as described in the High-Throughput Asynchronous Access for properties) are quite

similar to command groups. However, there are still some differences which are outlined in the

following.

• TriggeringWhile output buffer are executed as soon as they are flushed, command groups

may alternatively be triggered via an external trigger.

• Size Limit Command groups are somewhat limited in size regarding the number of com-

mands that may be put into them. Output buffer are (theoretically) unlimited in size.

• AtomicityOutput buffer simply try to optimize communication, but still treat the commands

independently from each other. Output buffer are flushed on library level. In contrast, com-

mand groups optimize both communication and synchronized execution. They are flushed

on controller level.

68MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

2.18 Trajectory Streaming

Trajectory streaming allows a multi DoF manipulator to follow specific trajectories using the MCS2

controller. All participating positioners are moved synchronously along the defined trajectory.1

This section describes the concepts of trajectory streaming and how an application program must

use the API to perform a trajectory movement.

A trajectory movement requires special (user) software to pre-calculate support points of the tra-

jectory (although the support points might also be calculated "on the fly"). These support points

are then streamed to the controller which takes care of executing a synchronized movement of all

participating channels.

2.18.1 General Streaming Concept

A trajectory stream is defined as a sequence of support points (frames). Each frame is a tuple

of target positions for all channels that participate in the trajectory. Each target position in turn

is a tuple of a channel index and a position value. Position values are given as a 64-bit integer

value in little-endian format, representing pico meters for linear positioners and nano degrees

for rotary positioners. All values are given as absolute (not relative) position values. Figure 2.7

shows the general format of a trajectory stream and figure 2.8 shows an example trajectory with

the according binary stream data.

The timing with which the frames are executed can be defined by the stream rate that is config-

urable by the user. This rate is constant for the duration of the stream. Furthermore, the timing

can be synchronized or even fully controlled by using an external trigger.

ix pos

Stream

Frame

frame 0 frame 1 frame n-2 frame n-1

target 0 target 1 target m-2 target m-1

Target

Figure 2.7: Trajectory Stream Format

Streaming Rules

When using trajectory streaming some rules must be heeded that are described in the following:

• Only one trajectory may be performed at a time. Suppose you have six channels available

that are divided into two XYZ manipulators (A and B). Then you could start a trajectory with

manipulator A. During this time it is not allowed to start a stream for manipulator B. If both

manipulators are to be synchronized then the streammust contain all six channels from the

beginning.

1Note that the trajectory streaming is not available for dual-piezo hybrid positioners.

69MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

5 10 15

5

10

15

Ch0
[µm]

Ch1
[µm]

Frame 0

n = 13
m = 2

Frame 12

0080841e00000000000180841e00000000000x0000

Offset Data

00c0c62d00000000000100093d00000000000x0012

00404b4c000000000001808d5b00000000000x0024

00c0cf6a000000000001c0cf6a00000000000x0036

0000127a00000000000140548900000000000x0048

0000127a000000000001c0d8a700000000000x005a

00405489000000000001405dc600000000000x006c

00c0d8a7000000000001c0e1e400000000000x007e

00405d650000000000010024f400000000000x0090

00c0e1e4000000000001c0e1e400000000000x00a2

000024f4000000000001405dc600000000000x00b4

00c0e1e4000000000001c0d8a700000000000x00c6

00405dc600000000000140548900000000000x00d8

Frame 0
Frame 1
Frame 2
Frame 3
Frame 4
Frame 5
Frame 6
Frame 7
Frame 8
Frame 9
Frame 10
Frame 11
Frame 12

Channel
Index

Position

Figure 2.8: Trajectory Stream Example

• The first frame of a stream defines which channels participate in the stream. All further

frames must contain the same channels (in the same order). Otherwise a stream error is

generated.

• A trajectory stream must consist of at least two frames (start frame and end frame).

• The movement between the support points is linearly interpolated by the controller (this is

the default setting, see subsection 2.18.3 "Options"). If amanipulator is supposed to perform

an accelerated movement along the trajectory then the support points must be calculated

accordingly.

• Channels that are not participating in the stream can still be fully controlled, while channels

that are currently streamed may answer with a SA_CTL_ERROR_BUSY_STREAMING error

code (see A.1) when sending certain configuration or movement commands.

• The sensors of all participating positioners must be enabled (in particular, the power save

mode is not allowed, see section 2.11 "Sensor Power Modes".

• Note that the trajectory stream defines the target position movement profile for all partici-

pating positioners. The control-loop does "it’s best" to move all positioners as close as possi-

ble along the defined trajectory. Nonetheless the actual current positions will deviate a little

bit from the target positions. To optimize the closed-loop performance and to reduce the

following error it may be necessary to modify the tuning parameters for the positioners. See

section 2.6.3 "Custom Positioner Types" for more information. The Following Error may be

polled to determine the difference while performing the movement. Furthermore, the "Fol-

lowing Error Detection" may be used to monitor (and potentially abort) the trajectory on a

defined deviation.

Flow Control

When the host transmits stream frames to the controller they are stored in a (FIFO) stream buffer

in the controller. The controller then executes the buffered frames synchronously. While the

frames are executed at a constant rate (the stream rate that the user has configured), the rate

at which the controller receives frames from the host may vary. Typically the rate is considerably

70MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

higher or frames arrive in bursts with intermissions (or both), e.g. due to USB / Ethernet latency or

application interruption by the operating system (see figure 2.9).

79% full

StageHost

Stream Data Stream Data

MCS2 Controller

Stream Buffer

Variable
Frame Rate

Constant
Frame Rate

Figure 2.9: Flow Control

The library implements a flow control mechanism to prevent a buffer overflow on the controller:

• If the SA_CTL_StreamFrame function is called faster than the configured stream rate then

the function may block from time to time, therefore implementing the flow control.

• If the SA_CTL_StreamFrame function is called slower than the configured stream rate then

the streaming will eventually fail with a buffer underflow error.

The controller’s stream buffer can hold up to 1024 tuples1 and while it allows a synchronized

and consistent stream, it also induces a delay to the incoming frames. This delay depends on

the controller’s buffer size, the number of channels that participate in the stream as well as the

configured stream rate and can be determined by the following formula:

execution delay [s] =
buffer size

stream rate [Hz] ∗ number of stream channels

E.g. a stream with a frame containing three tuples (position data for three channels) and a config-

ured stream rate of 1000 Hz would induce a constant buffer delay of
1024

1000 Hz ∗ 3
= 0.341 s.

2.18.2 Basic Approach

To execute a trajectory stream the following steps must be performed:

1. Configure the stream rate by writing the Stream Base Rate property (see section 4.10). This

defines the rate (in Hz) with which the frames of the trajectory are executed.

2. Move all positioners that participate in the trajectory to their starting position (first frame

of the stream). Otherwise starting the stream will likely cause unexpected behavior, since

stream frames hold absolute position values and therefore the first frame could cause very

high velocities that cannot be performed mechanically.

3. Open a stream by calling the SA_CTL_OpenStream function. It returns a stream handle that

must be passed to the following function calls to associate them with the opened stream.

1A tuple consists of a target position and it’s corresponding channel, see 2.18.1 (General Streaming Concept).

71MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

4. Supply the stream data by calling the SA_CTL_StreamFrame function once per frame that

should be executed. Note: This function may block if the flow control needs to throttle the

data rate. The function returns as soon as the frame was transmitted to the controller.

5. Close the stream by calling the SA_CTL_CloseStream function. To the controller this

marks the end of the stream. If the stream is not closed properly with this function call

(or aborted by calling SA_CTL_AbortStream) then the controller will generate a buffer un-

derflow error after the last frame has been executed.

NOTICE
Behavioral differences when closing or aborting a stream:

As already described, all incoming frames are stored in an intermediate buffer by

the device (see Flow Control). The basic approach, after having sent all frames

to the device, is to call SA_CTL_CloseStream. This leads to execution of all

pending frames and thus finishing the stream at the given position(s). If a stream

is to be stopped immediately, the SA_CTL_AbortStream function can be used.

This leads to a trajectory stop, while remaining frames already sent to the device

are discarded.

2.18.3 Options

Before calling the SA_CTL_OpenStream function the Stream Options property can be configured

to define the stream’s behavior. This property holds a bit mask which is outlined in the following

table.

Bit Name Short Description

0 Disable Linear Interpolation Disable the linear interpolation between consecutive

stream target positions.

Undefined flags are reserved for future use. These flags should be set to zero.

Disable Linear Interpolation (streaming options 0x00 or 0x01)

By default, the path between consecutive stream target positions is linearly interpolated. In some

applications this behavior might be unwanted. The interpolation can therefore be disabled using

this option, resulting in a point-to-point movement with the configured stream rate.

2.18.4 Trigger Modes

A trajectory stream may be configured to be triggered (started) by various events. For example,

in some situations it can be useful to synchronize the stream rate of a trajectory with an external

clock. A camera could then take snap shots with a frequency of 10Hz while the stage moves along

a trajectory with a time resolution of 200Hz.

72MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

The desired trigger mode is passed to the SA_CTL_OpenStream function. The following trigger

modes are available:

• SA_CTL_STREAM_TRIGGER_MODE_DIRECT (0)

• SA_CTL_STREAM_TRIGGER_MODE_EXTERNAL_ONCE (1)

• SA_CTL_STREAM_TRIGGER_MODE_EXTERNAL_SYNC (2)

• SA_CTL_STREAM_TRIGGER_MODE_EXTERNAL (3)

Please note that in order to use the external trigger modes, the Input Trigger must be configured

accordingly. Refer to section 2.20 "Input Trigger" on how to configure the device for triggered

streaming.

Direct Mode

In this mode the stream is started as soon as the stream buffer on the controller contains enough

data or has been closed (at which point a SA_CTL_EVENT_STREAM_READY event is generated).

External Once Mode

In this mode the stream is started by an external trigger that is fed into the device. Once the

stream buffer on the controller contains enough data or has been closed a

SA_CTL_EVENT_STREAM_READY event is generated to indicate that the stream is ready to be

triggered by the external trigger. In this armed state the device waits for the trigger to occur and

then generates a SA_CTL_EVENT_STREAM_TRIGGERED event. Further triggers are ignored in

this mode.

External Synchronization Mode

This mode is used to synchronize the stream rate with an external clock which may be fed into

the MCS2 controller. When the Stream External Sync Rate property is configured with the external

clock rate then the trajectory stream will be synchronized with the external clock.

t

External Clock

Internal Clock
(not synchronized)

Internal Clock
(synchronized)

3 cycles

10 cycles

9 cycles

Figure 2.10: External synchronization with a 3:1 clock ratio

Figure 2.10 shows an example where the base stream rate is (should be) three times faster than

the external sync rate (e.g. external 100Hz, internal 300Hz). The upper clock trace shows the

external clock which makes 3 cycles within a given time window (Δt). The middle clock trace shows

73MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

the internal clock while not being synchronized, being a speck too fast andmaking 10 cycles within

the same time window. In the lower clock trace the internal clock is synchronized, making 9 clock

cycles within the time window as desired. As a result the synchronization prevents the clocks from

drifting apart.

NOTICE
The external synchronization feature has some restrictions that should be noted:

• In order to use the external synchronization feature the MCS2 controller

must be equipped with an appropriate I/O Module.

• The Stream Base Rate must be a whole-number multiple of the external

clock rate.

• The external clock rate may not be higher than the Stream Base Rate.

External

In this mode, the external clock defines the streamrate and fully controls the trajectory’s start and

further execution. With each incoming trigger, the next support point of the given trajectory is

targeted. Note that the maximum stable frequency for the input signal is limited e.g. depending

on the number of involved channels (see Maximum Stream Rates).

Further implications when using the external trigger mode are:

• the configured Stream Base Rate is ignored

• the configured Stream External Sync Rate is ignored

• the internal linear interpolation is disabled (see Options)

2.18.5 Stream Events

A trajectory stream that is started always generates the following events (in the order given):

1. SA_CTL_EVENT_STREAM_READY This event is generated as soon as the internal stream

buffer of the device contains enough frames to start the streamwithout risking an immediate

buffer underflow. The default buffer threshold is 50%. In case the stream is very short this

event is generated as soon as the stream is closed.

2. SA_CTL_EVENT_STREAM_TRIGGERED This event is generated as soon as the device has

started to execute the stream. In case of direct streaming the Stream Ready and the Stream

Triggered events are generated at the same time. In case of externally triggered streaming

the Stream Triggered event is delayed until the external trigger is detected which effectively

starts the stream execution.

3. SA_CTL_EVENT_STREAM_FINISHED This event is generated when the stream has stopped

executing. The event parameter indicates the result of the streaming. This could be a nor-

mal termination (SA_CTL_ERROR_NONE when executed to the last frame) or an error code

specifying the reason for the abnormal termination.

74MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

2.18.6 Maximum Stream Rates

The maximum stable stream rate to be configured depends on the general communication load as

well as the number of involved channels. The more channels are included in the trajectory stream,

the higher the device’s stream load. Table 2.3 shows possible stream rates for different number of

streaming channels.

Channels Stream

Rate [Hz]

Channels Stream

Rate [Hz]

Channels Stream

Rate [Hz]

1 1000 7 480 13 260

2 1000 8 420 14 240

3 1000 9 370 15 220

4 840 10 340 16 210

5 670 11 300 17 200

6 560 12 280 18 190

Table 2.3: Stream Rate examples

For a more accurate determination of the maximum stream rate for the current setup the Stream

Load Maximum property can be monitored while streaming. The property acts like a peak detec-

tor. The highest load level generated by the currently running stream is stored and may be read

in percent with the Stream Load Maximum property. When starting the stream the load value is

reset to zero.

It is recommended to configure the trajectory stream (e.g. the Stream Base Rate) with some head-

room to the maximum load to guarantee a stable operation. If an overload is detected the trajec-

tory stream aborts with an SA_CTL_ERROR_SYNC_FAILED error.

Note that channels which are not part of the current stream can be fully controlled while a stream

is running. However, doing so always generates some peak load which must be considered. Note

further that streaming to multiple channels with high stream rates may also affect the perfor-

mance for operations concerning other channels.

2.19 Auxiliary Inputs and Outputs

TheMCS2 device offers auxiliary inputs and outputs to interface to external equipment.

NOTICE
The device must be equipped with an additional I/O module to use auxiliary in-

puts and outputs. The characteristics as well as the number of inputs and out-

puts vary depending on the specific type of I/Omodule. Please refer to the MCS2

User Manual for detailed electrical specifications.

75MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

2.19.1 Digital Device Input

Digital device inputs allow to synchronize movements to external events. Synchronizing the tra-

jectory streaming or triggering command groups as well as aborting movements by triggering an

emergency stop is possible. This feature is called "Input Trigger". See section 2.20 "Input Trigger"

for the configuration of the input trigger.

2.19.2 Fast Digital Outputs

Fast digital outputs may be used to trigger external equipment like detectors or cameras depend-

ing on the current position of a positioner. This feature is called "Output Trigger". See section 2.21

"Output Trigger" for the configuration of the output trigger.

2.19.3 General Purpose Digital Inputs/Outputs

General purpose digital inputs and outputs may be used to control lights, relays, dispensers, etc.

or to read the state of safety switches, light barriers, etc.

Digital Inputs

The Aux Digital Input Value property may be used to read the digital inputs of an I/O module. The

first bit (bit 0) of the input value corresponds to the first digital input (GP-DIN-1), the second bit (bit

1) corresponds to the second input (GP-DIN-2) and so on.

It is possible to enable an event notification for the digital inputs to be notified if an input changes.

Thus, continuous polling of the Aux Digital Input Value property can be avoided. To enable the

event set the SA_CTL_IO_MODULE_OPT_BIT_EVENTS_ENABLED bit of the I/O Module Options

property to one. Whenever a change of one or more of the general purpose digital inputs hap-

pens the device generates a SA_CTL_EVENT_DIGITAL_INPUT_CHANGED event with its parame-

ter holding the new state of the inputs. Note that the input state capture frequency for the event

generation is limited to approx. 100Hz. See section 2.4 "Event Notifications" for more information

on receiving events.

Example:

SA_CTL_Result_t result;

// read the digital inputs

int32_t input;

result = SA_CTL_GetProperty_i32(dHandle,0,

SA_CTL_PKEY_AUX_DIGITAL_INPUT_VALUE, &input, 0

);

if (result == SA_CTL_ERROR_NONE) {

// ‘input‘ holds the value of the digital inputs

}

// enable the digital input changed event

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_IO_MODULE_OPTIONS,

76MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

SA_CTL_IO_MODULE_OPT_BIT_EVENTS_ENABLED

);

// -> receive event using the SA_CTL_WaitForEvent() function

Digital Outputs

NOTICE
The digital output driver circuit is disabled by default and must be enabled by

setting the SA_CTL_IO_MODULE_OPT_BIT_DIGITAL_OUTPUT_ENABLED bit

of the I/O Module Options property.

The following properties may be used to modify the digital outputs:

• The Aux Digital Output Value property sets all outputs at once to a defined value.

• The Aux Digital Output Set property sets all specified outputs to one without modifying the

other ones.

• The Aux Digital Output Clear property clears all specified outputs without modifying the

other ones.

The first bit (bit 0) of the output value corresponds to the first digital output (GP-DOUT-1), the sec-

ond bit (bit 1) corresponds to the second output (GP-DOUT-2) and so on. Note that the general

purpose outputs are designed as open-collector outputs. This means that the output logic is in-

verted. Writing a one to an output switches the output transistor on which leads to a low signal

level at the output pin. The following code shows how to modify digital outputs of an I/O module:

SA_CTL_Result_t result;

// set the output driver voltage level to 5V

result = SA_CTL_SetProperty_i32(dHandle,0,

SA_CTL_PKEY_IO_MODULE_VOLTAGE, SA_CTL_IO_MODULE_VOLTAGE_5V

);

if (result) { /* handle error, abort */ }

// enable the digital output driver circuit of the I/O module

result = SA_CTL_SetProperty_i32(dHandle,0,

SA_CTL_PKEY_IO_MODULE_OPTIONS,

SA_CTL_IO_MODULE_OPT_BIT_DIGITAL_OUTPUTS_ENABLED

);

if (result) { /* handle error, abort */ }

// first set all digital outputs of the I/O module to a specific value

// note: electrical levels are inverted due to the open-collector outputs

// DOUT-4 | DOUT-3 | DOUT-2 | DOUT-1 |

// H(1) | L(0) | H(1) | L(0) |

result = SA_CTL_SetProperty_i32(dHandle,0,

SA_CTL_PKEY_AUX_DIGITAL_OUTPUT_VALUE, 0x00000005

);

if (result) { /* handle error, abort */ }

77MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

// next set output 2 (DOUT-2) without modifying the other outputs

// DOUT-4 | DOUT-3 | DOUT-2 | DOUT-1 |

// H(1) | L(0) | L(0) | L(0) |

result = SA_CTL_SetProperty_i32(dHandle,0,

SA_CTL_PKEY_AUX_DIGITAL_OUTPUT_SET, 0x00000002

);

if (result) { /* handle error, abort */ }

// last clear output 1 (DOUT-1) without modifying the other outputs

// DOUT-4 | DOUT-3 | DOUT-2 | DOUT-1 |

// H(1) | L(0) | L(0) | H(1) |

result = SA_CTL_SetProperty_i32(dHandle,0,

SA_CTL_PKEY_AUX_DIGITAL_OUTPUT_CLEAR, 0x00000001

);

2.19.4 Fast Analog Inputs

Fast analog inputs may be used to read analog voltage signals. An application can poll the Aux I/O

Module Input0 / Input1 Value properties and use the data for further processing. The I/O module

has a total number of six analog inputs which are mapped in groups of two to the channels of the

corresponding driver module. The following table shows the combinations of channel index and

property which must be used to read the input values of the six analog inputs:

Analog Input Channel Index Property

AIN-1 0 SA_CTL_PKEY_AUX_IO_MODULE_INPUT0_VALUE

AIN-2 1 SA_CTL_PKEY_AUX_IO_MODULE_INPUT0_VALUE

AIN-3 2 SA_CTL_PKEY_AUX_IO_MODULE_INPUT0_VALUE

AIN-4 0 SA_CTL_PKEY_AUX_IO_MODULE_INPUT1_VALUE

AIN-5 1 SA_CTL_PKEY_AUX_IO_MODULE_INPUT1_VALUE

AIN-6 2 SA_CTL_PKEY_AUX_IO_MODULE_INPUT1_VALUE

The following code shows how to read the first analog input assigned to the second channel (chan-

nel index 1) of a device (AIN-2):

SA_CTL_Result_t result;

int64_t input;

result = SA_CTL_GetProperty_i64(dHandle,1,

SA_CTL_PKEY_AUX_IO_MODULE_INPUT0_VALUE, &input, 0

);

if (result == SA_CTL_ERROR_NONE) {

// ‘input‘ holds the value of the analog input AIN-2

}

78MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

2.19.5 Using Analog Inputs as Control-Loop Feedback

The MCS2 supports to feed external analog signals into the control-loop of a channel. This allows

to implement applications like aligning a sample depending on the light intensity of an external

light detector or force feedback for a gripper, etc. These tasks require a more complex configura-

tion which is described in the following.

Note that the total number of six analog inputs of the I/O module are mapped in groups of two

to the channels of the corresponding driver module. This means that per channel only two of the

analog inputs may be used as control-loop feedback. (See Aux I/O Module Input Index property).

CAUTION
It is the user’s responsibility to guarantee that a valid signal is fed into the input

and that all properties (input ranges, PID parameters, etc.) are configured to rea-

sonable values before enabling the closed-loop operation. Configuring inappro-

priate values may result in unstable or unexpected behavior of the positioners

and potential damage of the stage.

To use an auxiliary input as control-loop feedback the following properties must be configured:

• The actual analog input must be selected with the Aux Input Select and Aux I/O Module

Input Index properties.

• The analog input rangemust be selected with the I/OModule Analog Input Range property.

• The Aux Positioner Type must be set to a custom positioner type slot. This slot must be

configured with a set of PID parameters with the Tuning and Customizing Properties. Note

that not all positioner type properties have a meaning when used as auxiliary positioner

type. The following properties are of interest to configure the PID loop: Positioner P Gain,

Positioner I Gain, Positioner D Gain, Positioner Anti Windup, Positioner PID Shift, Positioner

Target Hold Threshold. A dead band or dead zone for the input signal may be configured

with the Positioner Target Hold Threshold property.

• Depending on the specific application and the type of feedback signal it may be necessary to

disable the endstop detection by setting the Positioner ESDDistance Threshold property to

zero. Whenever the auxiliary input value represents a set-point for the control-loop instead

of a current position of the positioner the endstop detection must be disabled. (E.g. a force

signal in a force-feedback-gripper application defines the set-point and does not follow the

actual position.)

• Themodifications should be saved to a custom positioner type slot with the Save Positioner

Type property.

• The direction sense of the feedbackmust be defined with theAux Direction Inversion prop-

erty. It must match the direction sense of the control-loop output. Otherwise a runaway

condition may occur when commanding a closed-loop movement.

• The Control Loop Input propertymust be set to SA_CTL_CONTROL_LOOP_INPUT_AUX_IN

to feed the auxiliary input signal into the PID controller.

79MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

Using an auxiliary input as control-loop feedback has some special characteristics which need to

be considered:

• The SA_CTL_CH_STATE_BIT_SENSOR_PRESENT flag of the Channel State refers to the

position control-loop input. The auxiliary input signal is always treated as ‘present‘ for the

control-loop.

• The auxiliary input value is reflected in the ‘current position‘ of a channel, even if the rep-

resentation of the input signal has a physical unit different from ‘position‘. Commanding

the channels ‘target position‘ with the SA_CTL_Move function always refers to the absolute

value and range of the input signal.

• The auxiliary input signal is defined as absolute value, thus it is not possible to define a

logical scale offset, e.g. by setting the position with the Position property. Doing so affects

the position calculation of an integrated sensor of a positioner (if there is one). Several

properties give access to the position of an integrated sensor as well as the auxiliary input

values regardless of the actual signal currently used as feedback signal. Refer to figure 2.11

for the different signal paths and properties in this context.

• Two positioner type slots are used to define the tuning parameters of the control-loop:

– The Aux Positioner Type property defines a set of tuning parameters which is used if an

auxiliary input provides the control-loop feedback.

– The Positioner Type property defines the parameters for all other configurations.

The corresponding set of parameters is configured implicitly when changing the control-loop

input. This allows to switch between two operation modes without manually reconfiguring

the control-loop tuning.

The following figure shows the auxiliary input configuration for each channel:

AUX_SENSOR_MODULE_INPUT_INDEX*

AUX_IO_MODULE_INPUT_INDEX*

CONTROL_LOOP_INPUT*

commanded target position
 ("Move")

POSITION_MEAN_SHIFT*

TARGET_POSITION

POSITION

AUX_IO_INPUT0_VALUE

AUX_IO_INPUT1_VALUE

AUX_SM_INPUT0_VALUE

AUX_SM_INPUT1_VALUE

AUX_INPUT_SELECT*

CL_INPUT_SENSOR_VALUE

CL_INPUT_AUX_VALUE

Auxiliary-Property-Category Positioner-Property-Category

AUX_DIRECTION_INVERSION*

* persistent properties are marked with an asterisk, default selectors are printed in bold

Module channel: 0-n

SENSOR_INPUT_SELECT*

int64

int64

int64

int64

int64

int64

int64

int64

Sensor-Module

IO-Module

SMInput0

SMInput1

IOInput1/-2 /-3

IOInput4/-5/-6

Position
Sensor

Aux Inputs

Analog
Inputs

SM

IO

0

1

0

1

POSITION

CALC_SYS

AUX_IN

D/A > AMP

PID

positioner control
parameter

POS
CALC

positioner
1/2/3

SENSOR

Figure 2.11: Auxiliary Input Configuration (per channel)

80MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

2.19.6 Analog Outputs

Analog outputs generate analog voltage control signals for external amplifiers, dispensers etc.

NOTICE
The analog output driver circuit is in a high-impedance state by default. There-

fore, the SA_CTL_IO_MODULE_OPT_BIT_ANALOG_OUTPUT_ENABLED bit of

the I/O Module Options property must be set to enable the output driver.

The Aux Analog Output Value0 / Value1 properties may be used to output an analog voltage on

the I/O module analog outputs (AOUT-1 and AOUT-2).

The following code shows how to set both analog outputs of an I/O module:

SA_CTL_Result_t result;

// set the output value of analog output0 (AOUT-1) to zero

// which corresponds to 0V

result = SA_CTL_SetProperty_i32(dHandle,0,

SA_CTL_PKEY_AUX_ANALOG_OUTPUT_VALUE0, 0

);

if (result) { /* handle error, abort */ }

// set the output value of analog output1 (AOUT-2) to max

// which corresponds to +10V

result = SA_CTL_SetProperty_i32(dHandle,0,

SA_CTL_PKEY_AUX_ANALOG_OUTPUT_VALUE1, 32768

);

if (result) { /* handle error, abort */ }

2.20 Input Trigger

Digital input triggers allow to synchronize the device to external clock signals or events. The input

trigger may be used as an emergency stop input, to synchronize the trajectory streaming or to

trigger command groups (e.g. a group of movement commands).

NOTICE
In order to use the input trigger the device must be equipped with an additional

I/O module.

The following properties may be used to configure the input trigger:

• The Device Input Trigger Mode property defines how the device reacts to incoming trigger

signals. The available trigger modes are described in more detail in the following sections.

81MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

• The Device Input Trigger Condition property defines whether to react to rising or falling

edges.

2.20.1 Disabled Mode

This is the default mode in which all activities on the input line are ignored.

2.20.2 Emergency Stop Mode

The emergency stop input trigger mode allows to use the input trigger to issue an emergency stop.

In terms of the MCS2 an emergency stop stops all active movements. More precisely, the device

will hard-stop all channels and aborts active streams and command groups. Note that channels

moving with acceleration control active will also be stopped immediately. For Magnetic Driver

the behavior on an emergency stop is configurable. (See Positioner Control Options property.)

The desired behavior how to handle the emergency stop situations can further be configured by

setting the Emergency Stop Mode property to one of the following modes:

SA_CTL_EMERGENCY_STOP_MODE_NORMAL This is the default mode. In this mode the config-

ured input trigger condition issues an emergency stop. After such an event the device con-

tinues to behave normally.

SA_CTL_EMERGENCY_STOP_MODE_RESTRICTED In this mode the configured input trigger con-

dition will issue an emergency stop and make the device enter a locked state. In this state

you may communicate with the device normally, but all movement commands will respond

with a SA_CTL_EVENT_MOVEMENT_FINISHED event with its parameter set to

SA_CTL_ERROR_MOVEMENT_LOCKED. The locked state may be reset by setting the emer-

gency stop mode to any valid value, thereby unlocking the movement again.

SA_CTL_EMERGENCY_STOP_MODE_AUTO_RELEASE In this mode the configured input trigger

condition will issue an emergency stop and make the device enter a locked state. In this

state you may communicate with the device normally, but all movement commands will re-

spond with a SA_CTL_EVENT_MOVEMENT_FINISHED event with its parameter set to

SA_CTL_ERROR_MOVEMENT_LOCKED. This state remains until either the emergency stop

mode is set to any valid value or the input trigger line is released (inverse edge is detected).

The following code gives an example for the configuration of the input trigger when used as emer-

gency stop. After a successful configuration a falling edge on the input trigger will issue an emer-

gency stop. The following behavior is defined by the configured emergency stopmode (in this case

the device continues normally).

SA_CTL_Result_t result;

// set input trigger mode to emergency stop

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_DEV_INPUT_TRIG_MODE,

SA_CTL_DEV_INPUT_TRIG_MODE_EMERGENCY_STOP

);

82MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

if (result) { /* handle error, abort */ }

// set input trigger condition to falling edge

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_DEV_INPUT_TRIG_CONDITION,

SA_CTL_TRIGGER_CONDITION_FALLING

);

if (result) { /* handle error, abort */ }

// configure emergency stop mode

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_EMERGENCY_STOP_MODE,

SA_CTL_EMERGENCY_STOP_MODE_NORMAL

);

if (result) { /* handle error, abort */ }

2.20.3 Stream Sync Mode

The stream sync input trigger mode allows to use the streaming’s external trigger modes. Calling

SA_CTL_OpenStream with one of the following modes will start resp. synchronize the stream to

the input trigger.

• SA_CTL_STREAM_TRIGGER_MODE_EXTERNAL_ONCE

• SA_CTL_STREAM_TRIGGER_MODE_EXTERNAL_SYNC

• SA_CTL_STREAM_TRIGGER_MODE_EXTERNAL

See section 2.18 "Trajectory Streaming" for more information.

The following code gives an example for the configuration of the input trigger when used to start

the stream. After a successful configuration a stream is opened with trigger mode external once

parameter. If the stream is ready (stream ready event received), a rising edge on the input trigger

will start the trajectory’s execution.

SA_CTL_StreamHandle_t sHandle;

SA_CTL_Result_t result;

// set input trigger mode to stream sync

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_DEV_INPUT_TRIG_MODE,

SA_CTL_DEV_INPUT_TRIG_MODE_STREAM

);

if (result) { /* handle error, abort */ }

// set input trigger condition to rising edge

result = SA_CTL_SetProperty_i32(

dHandle,

0,

83MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

SA_CTL_PKEY_DEV_INPUT_TRIG_CONDITION,

SA_CTL_TRIGGER_CONDITION_RISING

);

if (result) { /* handle error, abort */ }

// open stream with trigger mode external once

result = SA_CTL_OpenStream(

dHandle,

&sHandle,

SA_CTL_STREAM_TRIGGER_MODE_EXTERNAL_ONCE

);

if (result) { /* handle error, abort */ }

// ...

// start streaming frames to the device

// ...

// >> stream ready event <<

// device is now waiting for the external trigger condition to start

// the stream

2.20.4 Command Group Sync Mode

The command group sync input trigger mode allows to use the command groups external trigger

mode. Calling SA_CTL_OpenCommandGroup with the trigger mode

SA_CTL_CMD_GROUP_TRIGGER_MODE_EXTERNAL will then delay the groups execution until the

external input trigger occurs. See section 2.17 "Command Groups" for more information.

The following code gives an example for the configuration of the input trigger when used for

starting command groups. After a successful configuration of the input trigger a command group

is opened with the external trigger mode parameter, filled (e.g. with SA_CTL_Move commands)

and then closed. The groups execution though is delayed until the device detects a rising edge on

the input trigger.

SA_CTL_TransmitHandle_t tHandle;

SA_CTL_Result_t result;

// set input trigger mode to cmd group sync

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_DEV_INPUT_TRIG_MODE,

SA_CTL_DEV_INPUT_TRIG_MODE_CMD_GROUP

);

if (result) { /* handle error, abort */ }

// set input trigger condition to rising edge

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_DEV_INPUT_TRIG_CONDITION,

SA_CTL_TRIGGER_CONDITION_RISING

);

if (result) { /* handle error, abort */ }

84MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

// open command group with trigger mode external

result = SA_CTL_OpenCommandGroup(

dHandle,

&tHandle,

SA_CTL_CMD_GROUP_TRIGGER_MODE_EXTERNAL

);

if (result) { /* handle error, abort */ }

// ...

// fill command group

// ...

// close command group

result = SA_CTL_CloseCommandGroup(dHandle, tHandle);

if (result) { /* handle error, abort */ }

// command group is now waiting for the external trigger condition

2.20.5 Event Trigger Mode

The event input trigger mode allows to get a notification whenever an electrical trigger signal was

detected on the trigger input. This mode is useful to simply inform the software about the occur-

rence of an external trigger signal without any further actions on the controller.

Note that the maximum frequency of the input signal should be limited to 500Hz in this mode.

The following code gives an example for the configuration of the input trigger when used to get

event notifications. After a successful configuration a rising edge on the input trigger will generate

an external input triggered event.

SA_CTL_Result_t result;

// set input trigger mode to event trigger

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_DEV_INPUT_TRIG_MODE,

SA_CTL_DEV_INPUT_TRIG_MODE_EVENT

);

if (result) { /* handle error, abort */ }

// set input trigger condition to rising edge

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_DEV_INPUT_TRIG_CONDITION,

SA_CTL_TRIGGER_CONDITION_RISING

);

if (result) { /* handle error, abort */ }

// wait for events

SA_CTL_Event_t event;

result = SA_CTL_WaitForEvent(dHandle,&event,SA_CTL_INFINITE);

if (result) { /* handle error, abort */ }

// ...

85MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

2.21 Output Trigger

In some applications it is useful to have the controller output a trigger signal each time the position

of a channel has made a certain increment or the target position has been reached. The trigger

signals may then be used by external logic (e.g. to trigger a camera).

NOTICE
In order to use the output trigger signals the device must be equipped with an

additional I/O module. Since each I/O module is connected to a specific driver

module the output trigger signals are assigned to the channels of the corre-

sponding driver module.

The following properties may be used to configure the output trigger:

• The Channel Output Trigger Mode property defines what is output to the corresponding

output pin. The available trigger modes are described in more detail in the following sec-

tions.

• The Channel Output Trigger Polarity property defines the polarity of the output trigger

signal.

• The Channel Output Trigger Pulse Width property specifies the pulse width of a trigger

output pulse.

• The I/O Module Options property bit

SA_CTL_IO_MODULE_OPT_BIT_DIGITAL_OUTPUT_ENABLED must be set to enable the

output driver circuit.

• The I/O Module Voltage selects the output voltage of the pin.

Note that the I/O module settings are global for all output channels of the I/O module. The follow-

ing example code enables the output trigger and configures the output voltage to 5V.

SA_CTL_Result_t result;

// set the output driver voltage level to 5V

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_IO_MODULE_VOLTAGE,

SA_CTL_IO_MODULE_VOLTAGE_5V

);

if (result) { /* handle error, abort */ }

// enable the output driver circuit of the I/O module

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_IO_MODULE_OPTIONS,

SA_CTL_IO_MODULE_OPT_BIT_DIGITAL_OUTPUT_ENABLED

);

86MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

if (result) { /* handle error, abort */ }

2.21.1 Constant Mode

This is the default mode in which a constant level is output. The level corresponds to the inactive

state of the configured Channel Output Trigger Polarity.

The following example shows how user defined levels can be output in this mode.

SA_CTL_Result_t result;

result = SA_CTL_SetProperty_i32(

dHandle,

2,

SA_CTL_PKEY_CH_OUTPUT_TRIG_POLARITY,

SA_CTL_TRIGGER_POLARITY_ACTIVE_HIGH

);

if (result) { /* handle error, abort */ }

result = SA_CTL_SetProperty_i32(

dHandle,

2,

SA_CTL_PKEY_CH_OUTPUT_TRIG_MODE,

SA_CTL_CH_OUTPUT_TRIG_MODE_CONSTANT

);

if (result) { /* handle error, abort */ }

// output of channel 2 level is now low

// perform some tasks...

result = SA_CTL_SetProperty_i32(

dHandle,

2,

SA_CTL_PKEY_CH_OUTPUT_TRIG_POLARITY,

SA_CTL_TRIGGER_POLARITY_ACTIVE_LOW

);

if (result) { /* handle error, abort */ }

// output of channel 2 level is now high

2.21.2 Position Compare Mode

The position compare mode allows to generate trigger signals according to the current position of

a positioner. One independent trigger per channel is available.

The following properties must be used to configure the position compare component:

• Channel Position Compare Start Threshold

• Channel Position Compare Increment

• Channel Position Compare Direction

• Channel Position Compare Limit Min

• Channel Position Compare Limit Max

87MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

These properties must be configured differently according to the required operation. The start

threshold and the increment span a raster of trigger positions over the positioners travel range.

A dynamic threshold value is used internally to define a trigger position. The current position is

compared against this threshold and the trigger is generated once the threshold has been passed.

The threshold value is then shifted according to the configured parameters to define the next

trigger position. The compare direction and a minimum and maximum position compare limit

may be configured additionally to limit the active range and to define the trigger behavior.

The following sections describe the different configurations.

Direction SA_CTL_FORWARD_DIRECTION or SA_CTL_BACKWARD_DIRECTION without limits

t

x

0

x

x

x

x

x

In this configuration the Channel Position Compare Direction is set to

SA_CTL_FORWARD_DIRECTION or SA_CTL_BACKWARD_DIRECTION and

the Channel Position Compare Limit Min and Channel Position Compare

Limit Max are not active. (Set to the same value to disable the limit checks.)

The position compare component will then only trigger on the next thresh-

old in the configured direction without ever being reset again. This means

that on the same position there will never be more than one trigger. To re-

set the component the Channel Position Compare Start Threshold must be

set again.

In the image the thresholds are marked with dotted lines with the green solid line being the move-

ment of the positioner. Every red X marks a trigger position.

Direction SA_CTL_EITHER_DIRECTION without limits

t

x

0

x

x

x

x

x

x

x

In this configuration the Channel Position Compare Direction is set to

SA_CTL_EITHER_DIRECTION and the Channel Position Compare Limit

Min and Channel Position Compare Limit Max are not active. (Set to the

same value to disable the limit checks.) The position compare component

will trigger in both directions, ignoring the most recent threshold, especially

not triggering indefinitely when stopping right on a threshold position. This

means that specific positions may trigger the output more than once but

only if a different trigger position has been reached in the meantime.

The image shows equal behavior to the previous example except that the

same physical position triggers the output more than once.

Direction SA_CTL_FORWARD_DIRECTION or SA_CTL_BACKWARD_DIRECTION with limits

In this configuration the Channel Position Compare Direction is set to SA_CTL_FORWARD_DIRECTION

or SA_CTL_BACKWARD_DIRECTION and the Channel Position Compare Limit Min and Channel

Position Compare Limit Max are active. This configuration is also called "line scanning" mode. Line

scanning means that positions in one moving direction trigger the output but not in the other di-

rection. The configured limits define a window between a min and a max position. Outside this

window no pulses will be generated.

88MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

t

x

0

x

x

x

min

max

x

x

The advantage of the limit configuration is that no manual reset of the start

threshold by writing the corresponding property is necessary. The thresh-

old will be reset automatically once a limit position has been passed. Note

that the limit positions should be defined with sufficient tolerance to reliably

pass the last threshold while moving.

This configuration is especially useful to implement raster scanning applica-

tions where e.g. an X/Y stage moves a sample along a specific trajectory

and a detector must be triggered according to the current position of a sample. With the X-

positioner being moved while inside the window and the Y-positioner at the turning points of

the X-positioner.

The image depicts the limits with a blue solid line, each threshold with a black dotted line and the

current position with a green solid line. Every red X marks a trigger position. Once the max limit

position has been passed the threshold is reset so that after passing the min limit position the

output trigger pulses will be generated again.

Direction SA_CTL_EITHER_DIRECTION with limits

In this configuration the Channel Position Compare Direction is set to SA_CTL_EITHER_DIRECTION

and the Channel Position Compare Limit Min and Channel Position Compare Limit Max are active.

This configuration is also called "snake scanning" mode.

t

x

0

x

x

x

min

max

x

x

x

x

x

The snake scanning mode acts as if there were two "line scanning" modes

active, one for each direction. Thismeans that positions within a windowwill

trigger the output in one direction and as soon as the limit has been passed

trigger the output in the opposite direction again. In other words, the active

trigger direction is flipped every time the corresponding limit position has

been passed. Note that the limit positions should be defined with sufficient

tolerance to reliably pass the last threshold while moving. This mode allows

automatic operation without any further configuration while performing the

movements.

The image depicts the limits with a blue solid line, each threshold with a black dotted line and the

current position with a green solid line. Every red X marks a trigger position.

Line Scanning Programming Example

The following code gives an example for the configuration of the output trigger for channel 1.

The movement is commanded with its reversal points defined to 0 and 5mm. After enabling the

trigger the channel will generate a 1µs pulse (0.5 µs high, 0.5 µs low) once the position of channel

1 passed 2mm in forward direction (horizontal red line). Furthermore every 500µm consecutive

pulses are output (displayed below the graph) until the max limit of 4.5mm was passed. This is

repeated for every movement starting from zero position.

SA_CTL_Result_t result;

result = SA_CTL_SetProperty_i64(

dHandle, 1,

89MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

t

x

0

0.5

x
x

x1.0

1.5

2.0

2.5

3.0

3.5

4.5

5.0

x
x
x
x
x

x
x
x
x

Figure 2.12: Visualization of the example for using the output trigger mode

SA_CTL_PKEY_CH_POS_COMP_START_THRESHOLD, 2e9

);

if (result) { /* handle error, abort */ }

result = SA_CTL_SetProperty_i64(

dHandle, 1,

SA_CTL_PKEY_CH_POS_COMP_INCREMENT, 500e6

);

if (result) { /* handle error, abort */ }

result = SA_CTL_SetProperty_i32(

dHandle, 1,

SA_CTL_PKEY_CH_POS_COMP_DIRECTION,

SA_CTL_FORWARD_DIRECTION

);

if (result) { /* handle error, abort */ }

result = SA_CTL_SetProperty_i64(

dHandle, 1,

SA_CTL_PKEY_CH_POS_COMP_LIMIT_MIN, 500e6

);

if (result) { /* handle error, abort */ }

result = SA_CTL_SetProperty_i64(

dHandle, 1,

SA_CTL_PKEY_CH_POS_COMP_LIMIT_MAX, 4500e6

);

if (result) { /* handle error, abort */ }

result = SA_CTL_SetProperty_i32(

dHandle, 1,

SA_CTL_PKEY_CH_OUTPUT_TRIG_POLARITY,

SA_CTL_TRIGGER_POLARITY_ACTIVE_HIGH

);

90MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

if (result) { /* handle error, abort */ }

result = SA_CTL_SetProperty_i32(

dHandle, 1,

SA_CTL_PKEY_CH_OUTPUT_TRIG_PULSE_WIDTH, 1000

);

if (result) { /* handle error, abort */ }

result = SA_CTL_SetProperty_i32(

dHandle, 1,

SA_CTL_PKEY_CH_OUTPUT_TRIG_MODE,

SA_CTL_CH_OUTPUT_TRIG_MODE_POSITION_COMPARE

);

if (result) { /* handle error, abort */ }

// start movement between position 0 and 5mm

2.21.3 Target Reached Mode

The target reached mode allows to generate a pulse once a closed-loop movement command

finished and the positioner reached its target position. The pulse is only generated for successfully

finished movement commands.

The following code gives an example for the configuration of the target reached output trigger for

channel 1. After enabling the trigger the output of the channel will generate a pulse of defined

length once the target position of a movement has been reached. Note that the configured pulse

width includes the duration of the pulse as well as the duration of the pause. When setting the

pulse width to 1000ns pulses with 500ns high level and 500ns low level will be generated.

SA_CTL_Result_t result;

result = SA_CTL_SetProperty_i32(

dHandle,

1,

SA_CTL_PKEY_CH_OUTPUT_TRIG_POLARITY,

SA_CTL_TRIGGER_POLARITY_ACTIVE_HIGH

);

if (result) { /* handle error, abort */ }

result = SA_CTL_SetProperty_i32(

dHandle,

1,

SA_CTL_PKEY_CH_OUTPUT_TRIG_PULSE_WIDTH,

1000

);

if (result) { /* handle error, abort */ }

result = SA_CTL_SetProperty_i32(

dHandle,

1,

SA_CTL_PKEY_CH_OUTPUT_TRIG_MODE,

SA_CTL_CH_OUTPUT_TRIG_MODE_TARGET_REACHED

);

if (result) { /* handle error, abort */ }

91MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

2.21.4 Actively Moving Mode

The actively moving mode generates an output level similar to the actively moving Channel State

bit. The output level is in the active state while the positioner is moving and inactive otherwise.

The following example code configures channel 2 to output a high level while the positioner is

moving.

SA_CTL_Result_t result;

result = SA_CTL_SetProperty_i32(

dHandle,

2,

SA_CTL_PKEY_CH_OUTPUT_TRIG_POLARITY,

SA_CTL_TRIGGER_POLARITY_ACTIVE_HIGH

);

if (result) { /* handle error, abort */ }

result = SA_CTL_SetProperty_i32(

dHandle,

2,

SA_CTL_PKEY_CH_OUTPUT_TRIG_MODE,

SA_CTL_CH_OUTPUT_TRIG_MODE_ACTIVELY_MOVING

);

if (result) { /* handle error, abort */ }

2.22 Phasing of Magnetic Driven Positioners

To drive brushless permanent magnet positioners the controller must know the absolute position

of the slider within amagnetic period. Since the position sensor works on an incremental basis the

absolute position is unknown at startup. The controller performs a special routine to establish the

phasing reference. For this the coils are driven in a defined pattern while monitoring the reaction

of the positioner. This sequence is known as "phasing".

The phasing is started automatically when the amplifier is enabled by setting the Amplifier Enabled

property to SA_CTL_ENABLED (0x01). Note that external force or displacement must not be

applied to the positioner while the sequence is running. The phasing takes some time to complete.

During this time the SA_CTL_CH_STATE_BIT_ACTIVELY_MOVING Channel State bit is set.

Once the sequence has finished a SA_CTL_EVENT_PHASING_FINISHED event is generated. The

parameter of the event holds a SA_CTL_ERROR_TIMEOUT error in case the phasing could not

determine the phase offset. Note that in this case the amplifier will also be disabled again.

If the phasing was successful the SA_CTL_CH_STATE_BIT_IS_PHASED Channel State bit is set

and the channel enters the closed-loop holding state.

92MCS2 Programmer’s Guide

2 GENERAL CONCEPTS

CAUTION
Note that the phasing routine induces some motion of the positioner while run-

ning. As a safety precaution, make sure that the positioner has enough freedom

to move without damaging other equipment.

The phasing is invalidated in the following cases:

• The positioner is detached from the channel

• The Logical Scale Inversion property is modified

• The Positioner Type property is modified

• The sensor is disabled with the Sensor Power Mode property

Subsequently the control-loop and the amplifier are disabled.

WARNING
Magnetic driven positioners are not self-locking. Disabling the control-loop re-

moves any holding force from the positioner. Make sure not to damage any

equipment when the positioner changes its position unintentionally!

2.23 Feature Permissions

The MCS2 has a feature permission system which allows to activate special features via an soft-

ware activation process without physically returning the controller to SmarAct. New features may

be unlocked by upgrading the controller with an upgrade file. The MCS2 Service Tool is used to

perform this upgrade. Please contact SmarAct for the details on purchasing a feature upgrade.

Currently the following features are available:

• Low Vibration Actuator Mode (Actuator Mode property)1

• Advanced Sensor Correction (Signal Correction Options property)1

In case that a feature is not activated on a controller, trying to enable it will generate a

SA_CTL_ERROR_PERMISSION_DENIED error.

1This feature is only available for Stick-Slip Piezo Driver.

93MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

NOTICE
All functions of the library use the cdecl calling convention. Some development

environments, such as Delphi, use stdcall by default. This must be taken into

account when importing the library functions.

3.1 Function Summary

Table 3.1 – Function Summary

Function Name Short Description Page

SA_CTL_GetFullVersionString Returns the version of the library as a

human readable string.

97

SA_CTL_GetResultInfo Returns a human readable error string

for the given error code.

98

SA_CTL_GetEventInfo Returns a human readable info string

for the given event.

99

SA_CTL_FindDevices Returns a list of locator strings of avail-

able devices.

100

SA_CTL_Open Opens a connection to a device. 102

SA_CTL_Close Closes a connection to a device. 103

SA_CTL_Cancel Unblocks all blocking API calls. 104

SA_CTL_GetProperty_i32 Directly returns the value of a 32-bit in-

teger property.

105

SA_CTL_SetProperty_i32 Directly sets the value of a 32-bit integer

property.

107

SA_CTL_SetPropertyArray_i32 Directly sets the value of a 32-bit integer

array property.

108

SA_CTL_GetProperty_i64 Directly returns the value of a 64-bit in-

teger property.

109

SA_CTL_SetProperty_i64 Directly sets the value of a 64-bit integer

property.

110

Continued on next page

94MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

Table 3.1 – Continued from previous page

Function Name Short Description Page

SA_CTL_SetPropertyArray_i64 Directly sets the value of a 64-bit integer

array property.

111

SA_CTL_GetProperty_s Directly returns the value of a string

property.

112

SA_CTL_SetProperty_s Directly sets the value of a string prop-

erty.

114

SA_CTL_RequestReadProperty Requests the value of a property (non-

blocking).

115

SA_CTL_ReadProperty_i32 Reads the value of a requested 32-bit in-

teger property.

117

SA_CTL_ReadProperty_i64 Reads the value of a requested 64-bit in-

teger property.

118

SA_CTL_ReadProperty_s Reads the value of a requested string

property.

119

SA_CTL_RequestWriteProperty_i32 Requests to write the value of a 32-bit

integer property (non-blocking).

121

SA_CTL_RequestWriteProperty_i64 Requests to write the value of a 64-bit

integer property (non-blocking).

123

SA_CTL_RequestWriteProperty_s Requests to write the value of a string

property (non-blocking).

124

SA_CTL_RequestWritePropertyArray_i32 Requests to write the value of a 32-bit

integer array property (non-blocking).

125

SA_CTL_RequestWritePropertyArray_i64 Requests to write the value of a 64-bit

integer array property (non-blocking).

126

SA_CTL_WaitForWrite Waits until a write operation has fin-

ished.

127

SA_CTL_CancelRequest Cancels a non-blocking read or write re-

quest.

128

SA_CTL_CreateOutputBuffer Opens up an output buffer for delayed

transmission of several commands.

129

SA_CTL_FlushOutputBuffer Flushes an output buffer and triggers

the transmission to the device.

130

SA_CTL_CancelOutputBuffer Cancels an output buffer and discards

all buffered commands.

131

SA_CTL_OpenCommandGroup Opens up an atomic command group. 132

Continued on next page

95MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

Table 3.1 – Continued from previous page

Function Name Short Description Page

SA_CTL_CloseCommandGroup Flushes a command group and makes

all commands of the group take effect.

133

SA_CTL_CancelCommandGroup Cancels a command group and discards

all buffered commands.

134

SA_CTL_WaitForEvent Listens to events from the device. 135

SA_CTL_Calibrate Performs a calibration. 137

SA_CTL_Reference Performs a finding of a reference mark. 139

SA_CTL_Move Performs a movement. 141

SA_CTL_Stop Aborts all ongoing movements. 143

SA_CTL_OpenStream Opens a stream. 144

SA_CTL_StreamFrame Sends a previously assembled frame to

the device.

146

SA_CTL_CloseStream Closes a stream. 148

SA_CTL_AbortStream Aborts a stream. 150

96MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2 Detailed Function Description

3.2.1 SA_CTL_GetFullVersionString

Interface:

const char* SA_CTL_GetFullVersionString();

Description:

This function returns the version of the library as a null terminated string.

Parameters:

none

Example:

cout << "version is: " << SA_CTL_GetFullVersionString() << endl;

97MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.2 SA_CTL_GetResultInfo

Interface:

const char* SA_CTL_GetResultInfo(

SA_CTL_Result_t result

);

Description:

All functions of the library return a result code that indicates success or failure of execution. This

functionmay be used to translate a result code into a human readable text string, e.g. to be output

on a console or a GUI element.

Parameters:

• result (SA_CTL_Result_t), input: The error code.

Example:

SA_CTL_Result_t result;

SA_CTL_DeviceHandle_t dHandle;

result = SA_CTL_Open(&dHandle, "usb:sn:MCS2-00000001", "");

if (result != SA_CTL_ERROR_NONE) {

cout << "Error occurred: " << SA_CTL_GetResultInfo(result) << endl;

}

98MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.3 SA_CTL_GetEventInfo

Interface:

const char* SA_CTL_GetEventInfo(

const SA_CTL_Event_t *event

);

Description:

On successful return of a call to SA_CTL_WaitForEvent this function may be used to translate

an event into a human readable text string, e.g. to be output on a console or a GUI element.

NOTICE
The string returned by this function resides in thread-local storage and remains

valid only until the next call of this function.

Parameters:

• event (const SA_CTL_Event_t *), input: Pointer to a buffer which holds an event returned

from SA_CTL_WaitForEvent

Example:

SA_CTL_Event_t event;

SA_CTL_Result_t result = SA_CTL_WaitForEvent(

dHandle,

&event,

SA_CTL_INFINITE

);

if (result == SA_CTL_ERROR_NONE) {

cout << "Received Event: " << SA_CTL_GetEventInfo(&event);

cout << endl;

}

See also:

SA_CTL_WaitForEvent

99MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.4 SA_CTL_FindDevices

Interface:

SA_CTL_Result_t SA_CTL_FindDevices(

const char *options,

char *deviceList,

size_t *deviceListLen

);

Description:

This function writes a list of locator strings of devices that are connected to the PC into deviceList.

The function lists devices with a USB or ethernet interface. The options parameter contains a list

of configuration options for the find procedure. The caller must pass a pointer to a char buffer

in deviceList and set deviceListLen to the size of the buffer. On success the function writes a list

of device locators into deviceList and the number of characters written into deviceListLen. If the

supplied buffer is too small to contain the generated list, the buffer will contain no valid content

but deviceListLen contains the required buffer size (in characters).

NOTICE
For devices with ethernet interface the Network Discover Mode must be set to

passive or active mode to enable the find procedure.

Parameters:

• options (const char *), input: Options for the find procedure (see section 2.1.3).

• deviceList (char *), output: Pointer to a buffer which holds the device locators after the func-

tion has returned. The locator strings are separated by a newline character.

• deviceListLen (size_t *), input/output: Specifies the size (in bytes) of outList before the func-

tion call. After the function call it holds the number of characters written to deviceList.

Example:

char buffer[4096];

size_t bufferSize = sizeof(buffer);

SA_CTL_Result_t result = SA_CTL_FindDevices("",buffer,&bufferSize);

if (result == SA_CTL_ERROR_NONE) {

// buffer holds the locator strings, separated by ’\n’

// bufferSize holds the number of characters written to the buffer

}

100MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

See also:

4.3.8 Network Discover Mode

101MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.5 SA_CTL_Open

Interface:

SA_CTL_Result_t SA_CTL_Open(

SA_CTL_DeviceHandle_t *dHandle,

const char *locator,

const char *config

);

Description:

Establishes a connection to a device for communication. Note that the overall device state is not

changed. For example, settings made in previous sessions are preserved. Even ongoing move-

ments are not interrupted by connecting to or disconnecting from the device.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t *), output: Handle to the device. Must be passed to fol-

lowing function calls.

• locator (const char *), input: Specifies the device (see section 2.1.1).

• config (const char *), input: Currently unused.

Example:

SA_CTL_Result_t result;

SA_CTL_DeviceHandle_t dHandle;

result = SA_CTL_Open(&dHandle, "usb:sn:MCS2-00000001", "");

if (result == SA_CTL_ERROR_NONE) {

// success

}

See also:

SA_CTL_Close

102MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.6 SA_CTL_Close

Interface:

SA_CTL_Result_t SA_CTL_Close(

SA_CTL_DeviceHandle_t dHandle

);

Description:

Closes a previously established connection to a device.

It is safe to call this function while other threads are still using the device, e.g., waiting for an event

with SA_CTL_WaitForEvent. All blocking functions will be unblocked and will return with an

SA_CTL_ERROR_CANCELED error.

After calling this function the device handle becomes invalid.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

Example:

SA_CTL_Result_t result;

SA_CTL_DeviceHandle_t dHandle;

result = SA_CTL_Open(&dHandle, "usb:sn:MCS2-00000001", "");

if (result == SA_CTL_ERROR_NONE) {

// success

result = SA_CTL_Close(dHandle);

}

See also:

SA_CTL_Open

103MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.7 SA_CTL_Cancel

Interface:

SA_CTL_Result_t SA_CTL_Cancel(

SA_CTL_DeviceHandle_t dHandle

);

Description:

This function unblocks a waiting SA_CTL_WaitForEvent call. If no thread is currently waiting,

the next call to SA_CTL_WaitForEventwill be canceled. The unblocked function will return with

an SA_CTL_ERROR_CANCELED error.

Calling this function before SA_CTL_Close is not required for proper cleanup.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

See also:

SA_CTL_WaitForEvent, SA_CTL_Close

104MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.8 SA_CTL_GetProperty_i32

Interface:

SA_CTL_Result_t SA_CTL_GetProperty_i32(

SA_CTL_DeviceHandle_t dHandle,

int8_t idx,

SA_CTL_PropertyKey_t pkey,

int32_t *value,

size_t *ioArraySize

);

Description:

This function retrieves a 32-bit integer property value (array) from the device. The caller must

supply a pointer to a buffer where the result should be written to as well as a size information

which indicates how many values may be written into the buffer. The function then writes the

resulting value(s) into the buffer and sets the size information to the number of values written.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• idx (int8_t), input: Index of the addressed device, module or channel (see section 2.2).

• pkey (SA_CTL_PropertyKey_t), input: Key that identifies the property.

• value (int32_t *), output: Pointer to a buffer where the result should be written to.

• ioArraySize (size_t *), input/output: Pointer to a size value that must contain the size of

the value buffer (in number of elements, not number of bytes) when the function is called.

On function return it contains the number of values written to the buffer. A null pointer is

allowed which implicitly indicates an array size of 1.

Example:

// get single value (number of bus modules)

int32_t numModules;

SA_CTL_Result_t result;

result = SA_CTL_GetProperty_i32(

dHandle, 0, SA_CTL_PKEY_NUMBER_OF_BUS_MODULES, &numModules, 0

);

if (result == SA_CTL_ERROR_NONE) {

// numModules holds the number of modules

}

// get value array

// firmware version properties are arrays of four int32 values

105MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

int32_t fwVersion[4];

size_t ioArraySize = 4;

result = SA_CTL_GetProperty_i32(

dHandle,0,SA_CTL_PKEY_FIRMWARE_VERSION,fwVersion,&ioArraySize

);

if (result == SA_CTL_ERROR_NONE) {

// ioArraySize holds the number of elements

// fwVersion holds the firmware version (rev., update, minor, major)

}

See also:

SA_CTL_SetProperty_i32, SA_CTL_GetProperty_i64,

SA_CTL_GetProperty_s

106MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.9 SA_CTL_SetProperty_i32

Interface:

SA_CTL_Result_t SA_CTL_SetProperty_i32(

SA_CTL_DeviceHandle_t dHandle,

int8_t idx,

SA_CTL_PropertyKey_t pkey,

int32_t value

);

Description:

This function writes a 32-bit integer property value to the device.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• idx (int8_t), input: Index of the addressed device, module or channel (see section 2.2).

• pkey (SA_CTL_PropertyKey_t), input: Key that identifies the property.

• value (int32_t), input: Value that should be written.

Example:

// set move mode

SA_CTL_Result_t result;

result = SA_CTL_SetProperty_i32(

dHandle,0,SA_CTL_PKEY_MOVE_MODE,SA_CTL_MOVE_MODE_STEP

);

if (result == SA_CTL_ERROR_NONE) {

// move mode for channel 0 is set to step mode (open-loop)

}

See also:

SA_CTL_GetProperty_i32, SA_CTL_SetProperty_i64,

SA_CTL_SetProperty_s

107MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.10 SA_CTL_SetPropertyArray_i32

Interface:

SA_CTL_Result_t SA_CTL_SetPropertyArray_i32(

SA_CTL_DeviceHandle_t dHandle,

int8_t idx,

SA_CTL_PropertyKey_t pkey,

const int32_t *values

size_t arraySize

);

Description:

This function writes multiple 32-bit integer values to the device and is used for setting array type

properties. The caller must supply a pointer to a buffer containing the values as well as a size

information which indicates how many values reside in the buffer.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• idx (int8_t), input: Index of the addressed device, module or channel (see section 2.2).

• pkey (SA_CTL_PropertyKey_t), input: Key that identifies the property.

• values (const int32_t *), input: Pointer to a buffer that must contain the values to be written.

• arraySize (size_t), input: Size value that must contain the size of the value buffer (in number

of elements, not number of bytes) when the function is called.

See also:

SA_CTL_GetProperty_i32, SA_CTL_SetPropertyArray_i64

108MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.11 SA_CTL_GetProperty_i64

Interface:

SA_CTL_Result_t SA_CTL_GetProperty_i64(

SA_CTL_DeviceHandle_t dHandle,

int8_t idx,

SA_CTL_PropertyKey_t pkey,

int64_t *value,

size_t *ioArraySize

);

Description:

This function retrieves a 64-bit integer property value (array) from the device. The caller must

supply a pointer to a buffer where the result should be written to as well as a size information

which indicates how many values may be written into the buffer. The function then writes the

resulting value(s) into the buffer and sets the size information to the number of values written.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• idx (int8_t), input: Index of the addressed device, module or channel (see section 2.2).

• pkey (SA_CTL_PropertyKey_t), input: Key that identifies the property.

• value (int64_t *), output: Pointer to a buffer where the result should be written to.

• ioArraySize (size_t *), input/output: Pointer to a size value that must contain the size of

the value buffer (in number of elements, not number of bytes) when the function is called.

On function return it contains the number of values written to the buffer. A null pointer is

allowed which implicitly indicates an array size of 1.

Example:

See example on page 105.

See also:

SA_CTL_SetProperty_i64, SA_CTL_GetProperty_i32,

SA_CTL_GetProperty_s

109MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.12 SA_CTL_SetProperty_i64

Interface:

SA_CTL_Result_t SA_CTL_SetProperty_i64(

SA_CTL_DeviceHandle_t dHandle,

int8_t idx,

SA_CTL_PropertyKey_t pkey,

int64_t value

);

Description:

This function writes a 64-bit integer property value to the device.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• idx (int8_t), input: Index of the addressed device, module or channel (see section 2.2).

• pkey (SA_CTL_PropertyKey_t), input: Key that identifies the property.

• value (int64_t), input: Value that should be written.

Example:

See example on page 107.

See also:

SA_CTL_GetProperty_i64, SA_CTL_SetProperty_i32,

SA_CTL_SetProperty_s

110MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.13 SA_CTL_SetPropertyArray_i64

Interface:

SA_CTL_Result_t SA_CTL_SetPropertyArray_i64(

SA_CTL_DeviceHandle_t dHandle,

int8_t idx,

SA_CTL_PropertyKey_t pkey,

const int64_t *values

size_t arraySize

);

Description:

This function writes multiple 64-bit integer values to the device and is used for setting array type

properties. The caller must supply a pointer to a buffer containing the values as well as a size

information which indicates how many values reside in the buffer.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• idx (int8_t), input: Index of the addressed device, module or channel (see section 2.2).

• pkey (SA_CTL_PropertyKey_t), input: Key that identifies the property.

• values (const int64_t *), input: Pointer to a buffer that must contain the values to be written.

• arraySize (size_t), input: Size value that must contain the size of the value buffer (in number

of elements, not number of bytes) when the function is called.

See also:

SA_CTL_GetProperty_i64, SA_CTL_SetPropertyArray_i32

111MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.14 SA_CTL_GetProperty_s

Interface:

SA_CTL_Result_t SA_CTL_GetProperty_s(

SA_CTL_DeviceHandle_t dHandle,

int8_t idx,

SA_CTL_PropertyKey_t pkey,

char *value,

size_t *ioArraySize

);

Description:

This function retrieves a string property value (array) from the device. The caller must supply

a pointer to a buffer where the result should be written to as well as a size information which

indicates how many bytes may be written into the buffer. The function then writes the resulting

string(s) into the buffer and sets the size information to the number of characters written. The

null termination of a string implicitly serves as a separator in case multiple strings are returned.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• idx (int8_t), input: Index of the addressed device, module or channel (see section 2.2).

• pkey (SA_CTL_PropertyKey_t), input: Key that identifies the property.

• value (char *), output: Pointer to a buffer where the result should be written to.

• ioArraySize (size_t *), input/output: Pointer to a size value that must contain size of the value

buffer (in bytes) when the function is called. On function return it contains the number of

characters written to the buffer.

Example:

char deviceSerial[128];

size_t len = sizeof(deviceSerial);

SA_CTL_Result_t result;

result = SA_CTL_GetProperty_s(

dHandle,0,SA_CTL_PKEY_DEVICE_SERIAL_NUMBER,deviceSerial,&len

);

if (result == SA_CTL_ERROR_NONE) {

// deviceSerial holds the unique serial number of the device

// len holds the length of the string

}

112MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

See also:

SA_CTL_SetProperty_s, SA_CTL_GetProperty_i32,

SA_CTL_GetProperty_i64

113MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.15 SA_CTL_SetProperty_s

Interface:

SA_CTL_Result_t SA_CTL_SetProperty_i32(

SA_CTL_DeviceHandle_t dHandle,

int8_t idx,

SA_CTL_PropertyKey_t pkey,

const char *value

);

Description:

This function writes a string property value to the device. Note that the length of strings may never

exceed 63 characters (plus a null terminator).

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• idx (int8_t), input: Index of the addressed device, module or channel (see section 2.2).

• pkey (SA_CTL_PropertyKey_t), input: Key that identifies the property.

• value (const char *), input: String that should be written.

Example:

SA_CTL_Result_t result;

result = SA_CTL_SetProperty_s(

dHandle,0,SA_CTL_PKEY_DEVICE_NAME,"MyFavoriteController"

);

if (result == SA_CTL_ERROR_NONE) {

// success

}

See also:

SA_CTL_GetProperty_s, SA_CTL_SetProperty_i32,

SA_CTL_SetProperty_i64

114MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.16 SA_CTL_RequestReadProperty

Interface:

SA_CTL_Result_t SA_CTL_RequestReadProperty(

SA_CTL_DeviceHandle_t dHandle,

int8_t idx,

SA_CTL_PropertyKey_t pkey,

SA_CTL_RequestID_t *rID,

SA_CTL_TransmitHandle_t tHandle

);

Description:

This function requests to read a property value (array) from the device and can be used for asyn-

chronous (non-blocking) access. The caller must supply a pointer to a buffer where the request ID

should be written to. Received values can be accessed later via the obtained request ID and the

corresponding SA_CTL_ReadProperty_x functions.

The advantage of this method is that the application may request several property values in fast

succession and then perform other tasks before blocking on the reception of the results.

NOTICE
The correct SA_CTL_ReadProperty_x function must be used depending on

the data type of the requested property. Otherwise the read will fail with a

SA_CTL_ERROR_INVALID_DATA_TYPE error.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• idx (int8_t), input: Index of the addressed channel or module (see section 2.2).

• pkey (SA_CTL_PropertyKey_t), input: Key of the property that is requested.

• rID (SA_CTL_RequestID_t *), output: Pointer to a request ID.

• tHandle (SA_CTL_TransmitHandle_t), input: Optional ID to a transmit buffer. If unused set to

zero.

115MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

Example:

// Note: to keep the example clear, we omit processing the result codes

SA_CTL_Request_t rID[2];

int64_t position;

int32_t state;

// Issue requests for the two properties "position" and "channel state"

SA_CTL_RequestReadProperty(

dHandle, 0, SA_CTL_PKEY_POSITION, &rID[0], 0

);

SA_CTL_RequestReadProperty(

dHandle, 0, SA_CTL_PKEY_CHANNEL_STATE, &rID[1], 0

);

// process other tasks

// ...

// Receive the results

SA_CTL_ReadProperty_i64(dHandle, rID[0], &position, 0);

SA_CTL_ReadProperty_i32(dHandle, rID[1], &state, 0);

See also:

SA_CTL_ReadProperty_i32, SA_CTL_ReadProperty_i64,

SA_CTL_ReadProperty_s

116MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.17 SA_CTL_ReadProperty_i32

Interface:

SA_CTL_Result_t SA_CTL_ReadProperty_i32(

SA_CTL_DeviceHandle_t dHandle,

SA_CTL_RequestID_t rID,

int32_t *value,

size_t *ioArraySize

);

Description:

This function reads a 32-bit integer property value (array) that has previously been requested using

SA_CTL_RequestReadProperty.

NOTICE
While the request-function is non-blocking the read-functions block until the de-

sired data has arrived.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• rID (SA_CTL_RequestID_t), input: ID of the addressed request.

• value (int32_t *), output: Pointer to a buffer where the result should be written to.

• ioArraySize (size_t *), input/output: Pointer to a size value that must contain the size of

the value buffer (in number of elements, not number of bytes) when the function is called.

On function return it contains the number of values written to the buffer. A null pointer is

allowed which implicitly indicates an array size of 1.

Example:

See example on page 116.

See also:

SA_CTL_RequestReadProperty, SA_CTL_ReadProperty_i64,

SA_CTL_ReadProperty_s

117MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.18 SA_CTL_ReadProperty_i64

Interface:

SA_CTL_Result_t SA_CTL_ReadProperty_i64(

SA_CTL_DeviceHandle_t dHandle,

SA_CTL_RequestID_t rID,

int64_t *value,

size_t *ioArraySize

);

Description:

This function reads a 64-bit integer property value (array) that has previously been requested using

SA_CTL_RequestReadProperty.

NOTICE
While the request-function is non-blocking the read-functions block until the de-

sired data has arrived.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• rID (SA_CTL_RequestID_t), input: ID of the addressed request.

• value (int64_t *), output: Pointer to a buffer where the result should be written to.

• ioArraySize (size_t *), input/output: Pointer to a size value that must contain the size of

the value buffer (in number of elements, not number of bytes) when the function is called.

On function return it contains the number of values written to the buffer. A null pointer is

allowed which implicitly indicates an array size of 1.

Example:

See example on page 116.

See also:

SA_CTL_RequestReadProperty, SA_CTL_ReadProperty_i32,

SA_CTL_ReadProperty_s

118MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.19 SA_CTL_ReadProperty_s

Interface:

SA_CTL_Result_t SA_CTL_ReadProperty_s(

SA_CTL_DeviceHandle_t dHandle,

SA_CTL_RequestID_t rID,

char *value,

size_t *ioStringSize

);

Description:

This function reads a string property value (array) that has previously been requested using

SA_CTL_RequestReadProperty.

NOTICE
While the request-function is non-blocking the read-functions block until the de-

sired data has arrived.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• rID (SA_CTL_RequestID_t), input: ID of the addressed request.

• value (char *), output: Pointer to a buffer where the result should be written to.

• ioStringSize (size_t *), input/output: Pointer to a size value that must contain size of the

value buffer (in bytes) when the function is called. On function return it contains the number

of characters written to the buffer.

Example:

// Note: to keep the example simple, we omit processing the result codes

SA_CTL_Request_t rID;

char deviceSerial[128];

size_t len = sizeof(deviceSerial);

// Issue request for the "device serial number" property

SA_CTL_RequestReadProperty(

dHandle, 0, SA_CTL_PKEY_DEVICE_SERIAL_NUMBER, &rID, 0

);

// process other tasks

// ...

119MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

// Receive the result

SA_CTL_ReadProperty_s(dHandle, rID, deviceSerial, &len);

See also:

SA_CTL_RequestReadProperty, SA_CTL_ReadProperty_i32,

SA_CTL_ReadProperty_i64

120MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.20 SA_CTL_RequestWriteProperty_i32

Interface:

SA_CTL_Result_t SA_CTL_RequestWriteProperty_i32(

SA_CTL_DeviceHandle_t dHandle,

int8_t idx,

SA_CTL_PropertyKey_t pkey,

int32_t value,

SA_CTL_RequestID_t *rID,

SA_CTL_TransmitHandle_t tHandle

);

Description:

This function writes a 32-bit integer value to the device and can be used for asynchronous (non-

blocking) access. The caller can supply a pointer to a buffer where the request ID should be written

to. The result (whether the write was successful or not) can be accessed later by passing the

obtained request ID to the SA_CTL_WaitForWrite function.

The advantage of this method is that the application may write several property values in fast

succession and then perform other tasks before blocking on the reception of the results.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• idx (int8_t), input: Index of the addressed channel or module (see section 2.2).

• pkey (SA_CTL_PropertyKey_t), input: Key of the property that should be accessed.

• value (int32_t), input: Value that should be written.

• rID (SA_CTL_RequestID_t *), output: Pointer to a request ID. Can be null pointer for call-and-

forget mechanism (see section 2.3.4).

• tHandle (SA_CTL_TransmitHandle_t), input: Optional ID to a transmit buffer. If unused set to

zero.

Example:

SA_CTL_Result_t result;

SA_CTL_RequestID_t rID;

int8_t channel;

int64_t holdTime = 5000;

// Request to set hold time to 5 seconds

result = SA_CTL_RequestWriteProperty_i32(

dHandle, channel, SA_CTL_PKEY_HOLD_TIME, holdTime, &rID, 0

121MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

);

// process other tasks

// ...

// Wait for the result to arrive

result = SA_CTL_WaitForWrite(dHandle, rID);

See also:

SA_CTL_WaitForWrite, SA_CTL_RequestWriteProperty_i64,

SA_CTL_RequestWriteProperty_s

122MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.21 SA_CTL_RequestWriteProperty_i64

Interface:

SA_CTL_Result_t SA_CTL_RequestWriteProperty_i64(

SA_CTL_DeviceHandle_t dHandle,

int8_t idx,

SA_CTL_PropertyKey_t pkey,

int64_t value,

SA_CTL_RequestID_t *rID,

SA_CTL_TransmitHandle_t tHandle

);

Description:

This function writes a 64-bit integer value to the device and can be used for asynchronous (non-

blocking) access. The caller can supply a pointer to a buffer where the request ID should be written

to. The result (whether the write was successful or not) can be accessed later by passing the

obtained request ID to the SA_CTL_WaitForWrite function.

The advantage of this method is that the application may write several property values in fast

succession and then perform other tasks before blocking on the reception of the results.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• idx (int8_t), input: Index of the addressed channel or module (see section 2.2).

• pkey (SA_CTL_PropertyKey_t), input: Key of the property that should be accessed.

• value (int64_t), input: Value that should be written.

• rID (SA_CTL_RequestID_t *), output: Pointer to a request ID. Can be null pointer for call-and-

forget mechanism (see section 2.3.4).

• tHandle (SA_CTL_TransmitHandle_t), input: Optional ID to a transmit buffer. If unused set to

zero.

Example:

See example on page 121.

See also:

SA_CTL_WaitForWrite, SA_CTL_RequestWriteProperty_i32,

SA_CTL_RequestWriteProperty_s

123MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.22 SA_CTL_RequestWriteProperty_s

Interface:

SA_CTL_Result_t SA_CTL_RequestWriteProperty_s(

SA_CTL_DeviceHandle_t dHandle,

int8_t idx,

SA_CTL_PropertyKey_t pkey,

const char *value,

SA_CTL_RequestID_t *rID,

SA_CTL_TransmitHandle_t tHandle

);

Description:

This function writes a string value to the device and can be used for asynchronous (non-blocking)

access. The caller can supply a pointer to a buffer where the request ID should be written to. The

result (whether the write was successful or not) can be accessed later by passing the obtained

request ID to the SA_CTL_WaitForWrite function.

The advantage of this method is that the application may write several property values in fast

succession and then perform other tasks before blocking on the reception of the results.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• idx (int8_t), input: Index of the addressed channel or module (see section 2.2).

• pkey (SA_CTL_PropertyKey_t), input: Key of the property that should be accessed.

• value (const char *), input: Value that should be written.

• rID (SA_CTL_RequestID_t *), output: Pointer to a request ID. Can be null pointer for call-and-

forget mechanism (see section 2.3.4).

• tHandle (SA_CTL_TransmitHandle_t), input: Optional ID to a transmit buffer. If unused set to

zero.

Example:

See example on page 121.

See also:

SA_CTL_WaitForWrite, SA_CTL_RequestWriteProperty_i32,

SA_CTL_RequestWriteProperty_i64

124MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.23 SA_CTL_RequestWritePropertyArray_i32

Interface:

SA_CTL_Result_t SA_CTL_RequestWritePropertyArray_i32(

SA_CTL_DeviceHandle_t dHandle,

int8_t idx,

SA_CTL_PropertyKey_t pkey,

int32_t *values,

size_t arraySize,

SA_CTL_RequestID_t *rID,

SA_CTL_TransmitHandle_t tHandle

);

Description:

This function writes multiple 32-bit integer values to the device and can be used for asynchronous

(non-blocking) access of array type properties. The caller must supply a pointer to a buffer con-

taining the values as well as a size information which indicates how many values reside in the

buffer. Furthermore a pointer to a buffer where the request ID should be written to can be pro-

vided. The result (whether the write was successful or not) can be accessed later by passing the

obtained request ID to the SA_CTL_WaitForWrite function.

The advantage of this method is that the application may write several property values in fast

succession and then perform other tasks before blocking on the reception of the results.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• idx (int8_t), input: Index of the addressed channel or module (see section 2.2).

• pkey (SA_CTL_PropertyKey_t), input: Key of the property that should be accessed.

• values (int32_t *), input: Pointer to a buffer that must contain the values to be written.

• arraySize (size_t), input: Size value that must contain the size of the value buffer (in number

of elements, not number of bytes) when the function is called.

• rID (SA_CTL_RequestID_t *), output: Pointer to a request ID. Can be null pointer for call-and-

forget mechanism (see section 2.3.4).

• tHandle (SA_CTL_TransmitHandle_t), input: Optional ID to a transmit buffer. If unused set to

zero.

See also:

SA_CTL_WaitForWrite, SA_CTL_RequestWritePropertyArray_i64

125MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.24 SA_CTL_RequestWritePropertyArray_i64

Interface:

SA_CTL_Result_t SA_CTL_RequestWritePropertyArray_i64(

SA_CTL_DeviceHandle_t dHandle,

int8_t idx,

SA_CTL_PropertyKey_t pkey,

int64_t *values,

size_t arraySize,

SA_CTL_RequestID_t *rID,

SA_CTL_TransmitHandle_t tHandle

);

Description:

This function writes multiple 64-bit integer values to the device and can be used for asynchronous

(non-blocking) access of array type properties. The caller must supply a pointer to a buffer con-

taining the values as well as a size information which indicates how many values reside in the

buffer. Furthermore a pointer to a buffer where the request ID should be written to can be pro-

vided. The result (whether the write was successful or not) can be accessed later by passing the

obtained request ID to the SA_CTL_WaitForWrite function.

The advantage of this method is that the application may write several property values in fast

succession and then perform other tasks before blocking on the reception of the results.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• idx (int8_t), input: Index of the addressed channel or module (see section 2.2).

• pkey (SA_CTL_PropertyKey_t), input: Key of the property that should be accessed.

• values (int64_t *), input: Pointer to a buffer that must contain the values to be written.

• arraySize (size_t), input: Size value that must contain the size of the value buffer (in number

of elements, not number of bytes) when the function is called.

• rID (SA_CTL_RequestID_t *), output: Pointer to a request ID. Can be null pointer for call-and-

forget mechanism (see section 2.3.4).

• tHandle (SA_CTL_TransmitHandle_t), input: Optional ID to a transmit buffer. If unused set to

zero.

See also:

SA_CTL_WaitForWrite, SA_CTL_RequestWritePropertyArray_i32

126MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.25 SA_CTL_WaitForWrite

Interface:

SA_CTL_Result_t SA_CTL_WaitForWrite(

SA_CTL_DeviceHandle_t dHandle,

SA_CTL_RequestID_t rID

);

Description:

This function returns the result of a property write access that has previously been requested

using the data type specific SA_CTL_RequestWriteProperty_x function.

NOTICE
While the request-function is non-blocking the SA_CTL_WaitForWrite func-

tion blocks until the desired result has arrived.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• rID (SA_CTL_RequestID_t), input: ID of the addressed request.

Example:

See example on page 121.

See also:

SA_CTL_RequestWriteProperty_i32, SA_CTL_RequestWriteProperty_i64,

SA_CTL_RequestWriteProperty_s

127MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.26 SA_CTL_CancelRequest

Interface:

SA_CTL_Result_t SA_CTL_CancelRequest(

SA_CTL_DeviceHandle_t dHandle,

SA_CTL_RequestID_t rID

);

Description:

This function cancels a non-blocking read or write request.

NOTICE
Without output buffering the request has already been sent. In this case only

the answer/result will be discarded but property writes will still be executed.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• rID (SA_CTL_RequestID_t), input: ID of the addressed request.

Example:

SA_CTL_Result_t result;

SA_CTL_RequestID_t rID;

// Request to set hold time to 5 seconds

result = SA_CTL_RequestWriteProperty_i32(

dHandle, 0, SA_CTL_PKEY_HOLD_TIME, 5000, &rID, 0

);

// process other tasks

// ...

// We are not interested in the result anymore and discard the request

result = SA_CTL_CancelRequest(dHandle, rID);

See also:

SA_CTL_RequestWriteProperty_i32, SA_CTL_RequestWriteProperty_i64,

SA_CTL_RequestWriteProperty_s, SA_CTL_RequestReadProperty

128MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.27 SA_CTL_CreateOutputBuffer

Interface:

SA_CTL_Result_t SA_CTL_CreateOutputBuffer(

SA_CTL_DeviceHandle_t dHandle,

SA_CTL_TransmitHandle_t *tHandle

);

Description:

Creates an output buffer for optimizing communication throughput with the device using the

asynchronous command set. After creation the retrieved transmit handle can be used to choose

whether a command is to be buffered or sent directly. A buffered command is not sent to the de-

vice immediately. Instead, the data is held back and stored in the internal buffer. Youmay accumu-

late several commands and then call SA_CTL_FlushOutputBuffer to initiate the transmission

or SA_CTL_CancelOutputBuffer to cancel the output buffer.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• tHandle (SA_CTL_TransmitHandle_t *), output: Pointer to a transmit handle.

Example:

// Note: to keep the example simple, we omit processing the result codes

SA_CTL_TransmitHandle_t tHandle;

SA_CTL_CreateOutputBuffer(dHandle, &tHandle);

SA_CTL_Move(dHandle, 0, 1000000, tHandle);

SA_CTL_Move(dHandle, 1, -1000000, tHandle);

// move commands have not been transmitted yet.

SA_CTL_FlushOutputBuffer(dHandle, tHandle);

// move commands have been transmitted and will be executed.

See also:

SA_CTL_FlushOutputBuffer, SA_CTL_CancelOutputBuffer

129MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.28 SA_CTL_FlushOutputBuffer

Interface:

SA_CTL_Result_t SA_CTL_FlushOutputBuffer(

SA_CTL_DeviceHandle_t dHandle,

SA_CTL_TransmitHandle_t tHandle

);

Description:

Initiates the transmission of all commands stored in the output buffer that is associated with the

given transmit handle.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• tHandle (SA_CTL_TransmitHandle_t), input: Handle of the addressed transmit buffer.

Example:

SA_CTL_Result_t result;

SA_CTL_TransmitHandle_t tHandle;

result = SA_CTL_CreateOutputBuffer(dHandle, &tHandle);

if (result == SA_CTL_ERROR_NONE) {

// tHandle now holds a valid transmit handle

}

// append commands to buffer here

result = SA_CTL_FlushBuffer(dHandle, tHandle);

if (result == SA_CTL_ERROR_NONE) {

// buffer is now flushed and the transmit handle released

}

// process generated answers/events

See also:

SA_CTL_CreateOutputBuffer, SA_CTL_CancelOutputBuffer

130MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.29 SA_CTL_CancelOutputBuffer

Interface:

SA_CTL_Result_t SA_CTL_CancelOutputBuffer(

SA_CTL_DeviceHandle_t dHandle,

SA_CTL_TransmitHandle_t tHandle

);

Description:

Discards all buffered commands and releases the associated transmit handle.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• tHandle (SA_CTL_TransmitHandle_t), input: Handle of the addressed transmit buffer.

Example:

SA_CTL_Result_t result;

SA_CTL_TransmitHandle_t tHandle;

result = SA_CTL_CreateOutputBuffer(dHandle, &tHandle);

if (result == SA_CTL_ERROR_NONE) {

// tHandle now holds a valid transmit handle

}

// append commands to buffer here

result = SA_CTL_CancelBuffer(dHandle, tHandle);

if (result == SA_CTL_ERROR_NONE) {

// all buffered commands are discarded and the transmit handle released

}

See also:

SA_CTL_CreateOutputBuffer, SA_CTL_FlushOutputBuffer

131MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.30 SA_CTL_OpenCommandGroup

Interface:

SA_CTL_Result_t SA_CTL_OpenCommandGroup(

SA_CTL_DeviceHandle_t dHandle,

SA_CTL_TransmitHandle_t *tHandle,

uint32_t triggerMode

);

Description:

Opens a command group that can be used to combine multiple asynchronous commands into

an atomic group. A trigger mode can be set to select between different modes to start the

groups execution. After creation the retrieved transmit handle can be used to choose whether

a command is to be grouped or sent directly. You may accumulate several commands and then

call SA_CTL_CloseCommandGroup to activate or SA_CTL_CancelCommandGroup to cancel the

command group.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• tHandle (SA_CTL_TransmitHandle_t *), output: Pointer to a transmit handle.

• triggerMode (uint32_t), input: Desired trigger mode for this command group. Must be either

SA_CTL_CMD_GROUP_TRIGGER_MODE_DIRECT (0) or

SA_CTL_CMD_GROUP_TRIGGER_MODE_EXTERNAL (1).

Example:

SA_CTL_Result_t result;

SA_CTL_TransmitHandle_t tHandle;

result = SA_CTL_OpenCommandGroup(

dHandle,&tHandle,SA_CTL_CMD_GROUP_TRIGGER_MODE_DIRECT

);

if (result == SA_CTL_ERROR_NONE) {

// tHandle now holds a valid transmit handle

}

See also:

SA_CTL_CloseCommandGroup, SA_CTL_CancelCommandGroup

132MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.31 SA_CTL_CloseCommandGroup

Interface:

SA_CTL_Result_t SA_CTL_CloseCommandGroup(

SA_CTL_DeviceHandle_t dHandle,

SA_CTL_TransmitHandle_t tHandle

);

Description:

Closes and eventually executes the assembled command group depending on the configured trig-

ger mode.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• tHandle (SA_CTL_TransmitHandle_t), input: Handle of the addressed transmit buffer.

Example:

SA_CTL_Result_t result;

SA_CTL_TransmitHandle_t tHandle;

result = SA_CTL_OpenCommandGroup(

dHandle,&tHandle,SA_CTL_CMD_GROUP_TRIGGER_MODE_DIRECT

);

if (result == SA_CTL_ERROR_NONE) {

// tHandle now holds a valid transmit handle

}

// append commands to buffer here

result = SA_CTL_CloseCommandGroup(dHandle, tHandle);

if (result == SA_CTL_ERROR_NONE) {

// command group is now activated. since the command group is

// triggered directly, it is executed right away.

}

// process other tasks

// ...

// optional: wait for the SA_CTL_EVENT_CMD_GROUP_TRIGGERED event

// process answers/events to commands

See also:

SA_CTL_OpenCommandGroup, SA_CTL_CancelCommandGroup

133MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.32 SA_CTL_CancelCommandGroup

Interface:

SA_CTL_Result_t SA_CTL_CancelCommandGroup(

SA_CTL_DeviceHandle_t dHandle,

SA_CTL_TransmitHandle_t tHandle

);

Description:

Discards all buffered commands and releases the associated transmit handle.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• tHandle (SA_CTL_TransmitHandle_t), input: Handle of the addressed transmit buffer.

Example:

SA_CTL_Result_t result;

SA_CTL_TransmitHandle_t tHandle;

result = SA_CTL_OpenCommandGroup(

dHandle,&tHandle,SA_CTL_CMD_GROUP_TRIGGER_MODE_DIRECT

);

if (result == SA_CTL_ERROR_NONE) {

// tHandle now holds a valid transmit handle

}

// append commands to buffer here

result = SA_CTL_CancelCommandGroup(dHandle, tHandle);

if (result == SA_CTL_ERROR_NONE) {

// all buffered commands are discarded and the transmit handle released

}

See also:

SA_CTL_OpenCommandGroup, SA_CTL_CloseCommandGroup

134MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.33 SA_CTL_WaitForEvent

Interface:

SA_CTL_Result_t SA_CTL_WaitForEvent(

SA_CTL_DeviceHandle_t dHandle,

SA_CTL_Event_t *event,

uint32_t timeout

);

Description:

This function blocks until the device reports an event. Usually this function is used in a separate

thread. The function returns when:

• An event has occurred within the given timeout. In this case the return value of the func-

tion will be SA_CTL_ERROR_NONE and the output parameter event will hold the event that

occurred. See section 2.4 "Event Notifications" for the structure of events.

• No event occurred within the given timeout. In this case the return value of the function will

be SA_CTL_ERROR_TIMEOUT and the event parameter is undefined.

• The call is canceled with a call of SA_CTL_Cancel from another application thread. In this

case the return value of the function will be SA_CTL_ERROR_CANCELED and the event pa-

rameter is undefined. This is typically useful when the application is to be terminated and

the event handling thread must be unblocked for a proper cleanup.

NOTICE
This function cannot be called simultaneously using multiple threads (for the

same device handle). If a second thread tries to call this function, then a

SA_CTL_ERROR_THREAD_LIMIT_REACHED error will be returned.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• event (SA_CTL_Event_t *), output: Event that occurred.

• timeout (uint32_t), input: Maximum time to wait for an event to occur. The timeout is given

in milliseconds. The special value SA_CTL_INFINITE is also valid. Setting the timeout to

zero will check for already queued events, but does not block if no event is available.

135MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

Example:

// thread 1:

SA_CTL_Event_t event;

SA_CTL_Result_t result;

result = SA_CTL_WaitForEvent(dHandle,&event,SA_CTL_INFINITE);

if (result == SA_CTL_ERROR_CANCELED) {

// SA_CTL_WaitForEvent was canceled before an event occurred

}

// thread 2:

// wake up waiting thread 1

SA_CTL_Result_t result = SA_CTL_Cancel(dHandle);

See also:

SA_CTL_Cancel

136MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.34 SA_CTL_Calibrate

Interface:

SA_CTL_Result_t SA_CTL_Calibrate(

SA_CTL_DeviceHandle_t dHandle,

int8_t idx,

SA_CTL_TransmitHandle_t tHandle

);

Description:

This movement function performs a calibration routine for a channel. Before calling this function

the calibration options should be configured. See section 2.7.1 "Calibrating" for more information.

NOTICE
The function call returns immediately, without waiting for themovement to com-

plete. The calibration may however take a few seconds to complete. Therefore

the SA_CTL_CH_STATE_BIT_CALIBRATING in the Channel State can be mon-

itored to determine the end of the calibration sequence.

CAUTION
As a safety precaution, make sure that the positioner has enough freedom to

move without damaging other equipment.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• idx (int8_t), input: Index of the addressed channel.

• tHandle (SA_CTL_TransmitHandle_t), input: Handle of the addressed transmit buffer. If un-

used set to zero.

Example:

SA_CTL_Result_t result;

// Set calibration mode for channel 0 (start direction: forward)

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_CALIBRATION_OPTIONS, 0

);

137MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

if (result == SA_CTL_ERROR_NONE) {

// calibration mode is now set

}

// Start calibration sequence

result = SA_CTL_Calibrate(dHandle, 0, 0);

if (result == SA_CTL_ERROR_NONE) {

// calibration is now started (function call returns immediately)

}

138MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.35 SA_CTL_Reference

Interface:

SA_CTL_Result_t SA_CTL_Reference(

SA_CTL_DeviceHandle_t dHandle,

int8_t idx,

SA_CTL_TransmitHandle_t tHandle

);

Description:

This movement function may be used to move the positioner to a known physical position. Before

calling this function the reference options as well as the Move Velocity and Move Acceleration

should be configured. See section 2.7.2 "Referencing" for more information.

NOTICE
The function call returns immediately, without waiting for themovement to com-

plete. The SA_CTL_CH_STATE_BIT_REFERENCING in the Channel State can

be monitored to determine the end of the referencing sequence. If the com-

mand was successful the SA_CTL_CH_STATE_BIT_IS_REFERENCED in the

Channel State will be set. This bit can also be checked to determine whether

it is necessary to perform the referencing sequence.

CAUTION
As a safety precaution, make sure that the positioner has enough freedom to

move without damaging other equipment.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• idx (int8_t), input: Index of the addressed channel.

• tHandle (SA_CTL_TransmitHandle_t), input: Handle of the addressed transmit buffer. If un-

used set to zero.

139MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

Example:

SA_CTL_Result_t result;

// Set find reference mode for channel 0 (default is 0)

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_REFERENCING_OPTIONS, 0

);

if (result == SA_CTL_ERROR_NONE) {

// desired reference mode is now set

}

// Start referencing sequence

result = SA_CTL_Reference(dHandle, 0, 0);

if (result == SA_CTL_ERROR_NONE) {

// referencing sequence has started (function call returns immediately)

}

140MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.36 SA_CTL_Move

Interface:

SA_CTL_Result_t SA_CTL_Move(

SA_CTL_DeviceHandle_t dHandle,

int8_t idx,

int64_t moveValue,

SA_CTL_TransmitHandle_t tHandle

);

Description:

This function instructs a positioner to move according to the current move configuration. The

move mode as well as corresponding parameters (e.g. Frequency, Velocity, HoldTime, etc.) have to

be configured beforehand using the SA_CTL_SetProperty_x functions. See section 2.7 "Mov-

ing Positioners" for more information.

NOTICE
The function call returns immediately, without waiting for themovement to com-

plete. The Channel State bits SA_CTL_CH_STATE_BIT_ACTIVELY_MOVING

and SA_CTL_CH_STATE_BIT_CLOSED_LOOP_ACTIVE can be monitored to

determine the end of the movement.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• idx (int8_t), input: Index of the addressed channel.

• moveValue (int64_t), input: Interpretation depends on the configured move mode.

• tHandle (SA_CTL_TransmitHandle_t), input: Handle of the addressed transmit buffer. If un-

used set to zero.

Example:

// Note: to keep the example simple, we omit processing the result codes

// Set move mode

SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_MOVE_MODE, SA_CTL_MOVE_MODE_CL_RELATIVE

);

// Set move velocity [in pm/s]

SA_CTL_SetProperty_i64(

141MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

dHandle, 0, SA_CTL_PKEY_MOVE_VELOCITY, 500000000

);

// Set move acceleration [in pm/s2],

// a value of 0 disables the acceleration control

SA_CTL_SetProperty_i64(

dHandle, 0, SA_CTL_PKEY_MOVE_ACCELERATION, 0

);

// Start actual movement, moveValue holds relative position (in pm)

SA_CTL_Move(dhandle, 0, 500000000, 0);

142MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.37 SA_CTL_Stop

Interface:

SA_CTL_Result_t SA_CTL_Stop(

SA_CTL_DeviceHandle_t dHandle,

int8_t idx,

SA_CTL_TransmitHandle_t tHandle

);

Description:

This function stops any ongoing movement of a positioner. The exact behavior depends on the

specific channel’s type. See section 2.7.5 "Stopping Movements" for more information.

Note for closed-loop movements with acceleration control enabled: The first stop command sent

while moving triggers the positioner to come to a halt by decelerating to zero. A second stop

command triggers a hard stop (emergency stop).

NOTICE
The function call returns immediately, without waiting for the stop to complete.

The SA_CTL_CH_STATE_BIT_ACTIVELY_MOVING in the Channel State can be

monitored to determine the end of the movement.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• idx (int8_t), input: Index of the addressed channel.

• tHandle (SA_CTL_TransmitHandle_t), input: Handle of the addressed transmit buffer. If un-

used set to zero.

Example:

int8_t channel = 0;

SA_CTL_Result_t result;

result = SA_CTL_Stop(dHandle, channel, 0);

if (result == SA_CTL_ERROR_NONE) {

// stop command is now being executed

}

143MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.38 SA_CTL_OpenStream

Interface:

SA_CTL_Result_t SA_CTL_OpenStream(

SA_CTL_DeviceHandle_t dHandle,

SA_CTL_StreamHandle_t *sHandle,

uint32_t triggerMode

);

Description:

This function opens a stream to the device. It is used for trajectory streaming (see section 2.18).

The caller must supply a pointer to a buffer where the stream handle should be written to. A

trigger mode can be set to select between different modes to start and synchronize the streaming

process.

NOTICE
For most of the supported trigger modes, the desired stream base rate has to

be configured before calling this function (see section Trigger Modes).

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• sHandle (SA_CTL_StreamHandle_t *), output: Pointer to a stream handle.

• triggerMode (uint32_t), input: Desired trigger mode. May be one of

SA_CTL_STREAM_TRIGGER_MODE_DIRECT (0),

SA_CTL_STREAM_TRIGGER_MODE_EXTERNAL_ONCE (1),

SA_CTL_STREAM_TRIGGER_MODE_EXTERNAL_SYNC (2),

SA_CTL_STREAM_TRIGGER_MODE_EXTERNAL (3).

Example:

SA_CTL_Result_t result;

SA_CTL_StreamHandle_t sHandle;

result = SA_CTL_OpenStream(

dHandle,

&sHandle,

SA_CTL_STREAM_TRIGGER_MODE_DIRECT

);

if (result == SA_CTL_ERROR_NONE) {

// stream is now opened

144MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

}

See also:

SA_CTL_StreamFrame, SA_CTL_CloseStream, SA_CTL_AbortStream

145MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.39 SA_CTL_StreamFrame

Interface:

SA_CTL_Result_t SA_CTL_StreamFrame(

SA_CTL_DeviceHandle_t dHandle,

SA_CTL_StreamHandle_t sHandle,

uint8_t *frameData,

uint32_t frameSize

);

Description:

This function supplies the device with stream data by sending one frame per function call. A frame

contains the data for one interpolation point whichmust be assembled by concatenating elements

of the following tuple:

• Channel Index (1 byte): The channel that receives the following position.

• Position (8 byte): A position that belongs to the current interpolation point.

See section 2.18 "Trajectory Streaming" for more information.

NOTICE
This function may block if the flow control needs to throttle the data rate. The

function returns as soon as the frame was transmitted to the controller.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• sHandle (SA_CTL_StreamHandle_t), input: Handle of the addressed stream.

• frameData (uint8_t *), input: Pointer to the frame data buffer.

• frameSize (uint32_t), input: Size of the given frame (in bytes).

Example:

SA_CTL_Result_t result;

// create frame data array for 2 channel/position tuples

uint8_t frameData[2*(1+8)];

// fill frame with data

// ...

// send frame

146MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

result = SA_CTL_StreamFrame(

dHandle, sHandle, frameData, sizeof(frameData)

);

if (result == SA_CTL_ERROR_NONE) {

// frame successfully sent to the device

}

See also:

SA_CTL_OpenStream, SA_CTL_CloseStream, SA_CTL_AbortStream

147MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.40 SA_CTL_CloseStream

Interface:

SA_CTL_Result_t SA_CTL_CloseStream(

SA_CTL_DeviceHandle_t dHandle,

SA_CTL_StreamHandle_t sHandle

);

Description:

This function closes a stream. For the device this marks the end of the stream. After having

processed the remaining buffered interpolation points the stream is finished. See section 2.18

"Trajectory Streaming" for more information.

NOTICE
If the stream is not closed properly, the device will generate a buffer underflow

error after the last frame has been processed.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• sHandle (SA_CTL_StreamHandle_t), input: Handle of the addressed stream.

Example:

SA_CTL_StreamHandle_t sHandle;

SA_CTL_Result_t result;

result = SA_CTL_OpenStream(

dHandle,

&sHandle,

SA_CTL_STREAM_TRIGGER_MODE_DIRECT

);

if (result != SA_CTL_ERROR_NONE) {

// handle error

}

// stream frames

// ...

result = SA_CTL_CloseStream(dHandle, sHandle);

// remaining interpolation points are now processed

148MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

See also:

SA_CTL_OpenStream, SA_CTL_StreamFrame, SA_CTL_AbortStream

149MCS2 Programmer’s Guide

3 FUNCTION REFERENCE

3.2.41 SA_CTL_AbortStream

Interface:

SA_CTL_Result_t SA_CTL_AbortStream(

SA_CTL_DeviceHandle_t dHandle,

SA_CTL_StreamHandle_t sHandle

);

Description:

This function aborts a stream. Thus all movements are stopped immediately and remaining

buffered interpolation points are discarded.

Parameters:

• dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

• sHandle (SA_CTL_StreamHandle_t), input: Handle of the addressed stream.

Example:

SA_CTL_StreamHandle_t sHandle;

SA_CTL_Result_t result;

result = SA_CTL_OpenStream(

dHandle,

&sHandle,

SA_CTL_STREAM_TRIGGER_MODE_DIRECT

);

if (result != SA_CTL_ERROR_NONE) {

// handle error

}

// stream frames

// ...

result = SA_CTL_AbortStream(dHandle, sHandle);

// stream is aborted immediately

See also:

SA_CTL_OpenStream, SA_CTL_StreamFrame, SA_CTL_CloseStream

150MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.1 Property Introduction

The property reference describes all available configuration values of the device. See section 2.2

"Properties" for general information about how to access properties.

The head section of each property lists:

• the property key in the form of a C-Definition as defined in the SmarActControlConstants.h

• the Code of the property key in the form of a hexadecimal code

• the ASCII-Command of the property (only available for devices with ethernet interface)

• and the following attributes:

Attribute Values Meaning

Type I32, I64 or String The data type of the property. Depending on the data type

the corresponding function variant must be used to access

the property.

Index Device, Module,

Channel, API

The index parameter which must be passed to the property

function. "Device" or "API": the index parameter is unused

and must be set to zero. "Module" or "Channel": the index

parameter addresses a specific module or channel.

Access R,RW,W,R(W) The access-mode of the property. "R": the property is read-

able, "W": the property is writable, "(W)": the property is

writable but the write protection must be removed before

being able to write to this property.

Volatility V,NV,NV-P,- The volatility of the property. "V": the property is volatile, it is

set to its default value on power-up of the device. "NV": the

property is stored to nonvolatile memory and need not be

configured on every power-up of the device. "NV-P": same

as "NV" but additionally the property is not reset to its de-

fault when performing a firmware update.

Cmd-Group X,- Indicates if the property may be added to a command group

("X") or not ("-"). See section 2.17 "Command Groups" for

more information.

Properties may be applicable only for certain interface or driver types. The type code of a channel

or module can be read using the corresponding Module Type and Channel Type properties. See

section 2.5 "Module Overview" for more information.

151MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.2 Property Summary

Table 4.1 – Property Summary

Property Code Type Idx Access V1 CG2 Page

Device Properties

Number of Channels 0x020F0017 I32 Dev R - - 157

Number of Bus Modules 0x020F0016 I32 Dev R - - 158

Interface Type 0x020F0066 I32 Dev R - - 159

Device State 0x020F000F I32 Dev R - - 160

Device Serial Number 0x020F005E String Dev R - - 161

Device Name 0x020F003D String Dev RW NV-P - 162

Emergency Stop Mode 0x020F0088 I32 Dev RW V - 163

Network Discover Mode 0x020F0159 I32 Dev RW NV-P - 164

Network DHCP Timeout 0x020F015C I32 Dev RW NV-P - 166

Module Properties

Power Supply Enabled 0x02030010 I32 Mod RW V X 168

Number of Bus Module

Channels

0x02030017 I32 Mod R - X 169

Module Type 0x02030066 I32 Mod R - - 170

Module State 0x0203000F I32 Mod R - X 171

Positioner Properties

Amplifier Enabled 0x0302000D I32 Ch RW V X 174

Amplifier Mode 0x030200BF I32 Ch RW NV X 176

Positioner Control Options 0x0302005D I32 Ch RW NV X 178

Actuator Mode 0x03020019 I32 Ch RW V - 180

Control Loop Input 0x03020018 I32 Ch RW NV X 182

Sensor Input Select 0x03020018 I32 Ch RW NV X 182

Positioner Type 0x0302003C I32 Ch RW NV X 186

Positioner Type Name 0x0302003D String Ch R - - 188

Move Mode 0x03050087 I32 Ch RW V X 189

Channel Type 0x02020066 I32 Ch R - - 191

Channel State 0x0305000F I32 Ch R - X 192

Position 0x0305001D I64 Ch RW V X 193

Target Position 0x0305001E I64 Ch R - X 195

Continued on next page

152MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Table 4.1 – Continued from previous page

Property Code Type Idx Access V1 CG2 Page

Scan Position 0x0305001F I64 Ch R - X 196

Scan Velocity 0x0305002A I64 Ch RW V X 197

Hold Time 0x03050028 I32 Ch RW V X 198

Move Velocity 0x03050029 I64 Ch RW V X 200

Move Acceleration 0x0305002B I64 Ch RW V X 202

Max Closed Loop Frequency 0x0305002F I32 Ch RW V X 204

Default Max Closed Loop

Frequency

0x03050057 I32 Ch RW NV X 205

Step Frequency 0x0305002E I32 Ch RW V X 206

Step Amplitude 0x03050030 I32 Ch RW V X 207

Following Error 0x03020055 I64 Ch R - X 208

Following Error Limit 0x03050055 I64 Ch RW NV X 209

Broadcast Stop Options 0x0305005D I32 Ch RW NV X 210

Sensor Power Mode 0x03080019 I32 Ch RW NV X 211

Sensor Power Save Delay 0x03080054 I32 Ch RW NV X 213

Position Mean Shift 0x03090022 I32 Ch RW NV X 215

Safe Direction 0x03090027 I32 Ch RW NV X 216

Control Loop Input Sensor

Value

0x0302001D I64 Ch R - X 218

Control Loop Input Aux Value 0x030200B2 I64 Ch R - X 219

Target To Zero Voltage Hold

Threshold

0x030200B9 I32 Ch RW NV X 220

Scale Properties

Logical Scale Offset 0x02040024 I64 Ch RW NV X 222

Logical Scale Inversion 0x02040025 I32 Ch RW NV X 223

Range Limit Min 0x02040020 I64 Ch RW V X 225

Range Limit Max 0x02040021 I64 Ch RW V X 226

Default Range Limit Min 0x020400C0 I64 Ch RW NV X 227

Default Range Limit Max 0x020400C1 I64 Ch RW NV X 228

Calibration Properties

Calibration Options 0x0306005D I32 Ch RW V X 229

Signal Correction Options 0x0306001C I32 Ch RW NV X 231

Continued on next page

153MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Table 4.1 – Continued from previous page

Property Code Type Idx Access V1 CG2 Page

Referencing Properties

Referencing Options 0x0307005D I32 Ch RW V X 233

Distance To Reference Mark 0x030700A2 I64 Ch R - X 235

Distance Code Inverted 0x0307000E I32 Ch RW NV X 236

Positioner Tuning and Customizing Properties

Positioner Movement Type 0x0309003F I32 Ch R(W) (NV) X 237

Positioner Is Custom Type 0x03090041 I32 Ch R - X 239

Positioner Base Unit 0x03090042 I32 Ch R(W) (NV) X 240

Positioner Base Resolution 0x03090043 I32 Ch R(W) (NV) X 242

Positioner Sensor Head Type 0x0309008E I32 Ch R(W) (NV) X 244

Positioner Reference Type 0x03090048 I32 Ch R(W) (NV) X 245

Positioner P Gain 0x0309004B I32 Ch R(W) (NV) X 247

Positioner I Gain 0x0309004C I32 Ch R(W) (NV) X 248

Positioner D Gain 0x0309004D I32 Ch R(W) (NV) X 249

Positioner PID Shift 0x0309004E I32 Ch R(W) (NV) X 250

Positioner Anti Windup 0x0309004F I32 Ch R(W) (NV) X 252

Positioner ESD Distance

Threshold

0x03090050 I32 Ch R(W) (NV) X 254

Positioner ESD Counter

Threshold

0x03090051 I32 Ch R(W) (NV) X 256

Positioner Target Reached

Threshold

0x03090052 I32 Ch R(W) (NV) X 257

Positioner Target Hold

Threshold

0x03090053 I32 Ch R(W) (NV) X 258

Save Positioner Type 0x0309000A I32 Ch W V X 260

Positioner Write Protection 0x0309000D I32 Ch RW V X 261

Streaming Properties

Stream Base Rate 0x040F002C I32 Dev RW V - 262

Stream External Sync Rate 0x040F002D I32 Dev RW V - 263

Stream Options 0x040F005D I32 Dev RW V - 265

Stream Load Maximum 0x040F0301 I32 Dev R - - 266

Diagnostic Properties

Channel Error 0x0502007A I32 Ch R - X 267

Continued on next page

154MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Table 4.1 – Continued from previous page

Property Code Type Idx Access V1 CG2 Page

Channel Temperature 0x05020034 I32 Ch R - X 269

Bus Module Temperature 0x05030034 I32 Mod R - X 270

Positioner Fault Reason 0x05020113 I32 Ch R - X 271

Auxiliary Properties

Aux Positioner Type 0x0802003C I32 Ch RW NV X 274

Aux Positioner Type Name 0x0802003D String Ch R - - 276

Aux Input Select 0x08020018 I32 Ch RW NV X 277

Aux I/O Module Input Index 0x081100AA I32 Ch RW NV X 278

Aux Direction Inversion 0x0809000E I32 Ch RW NV X 280

Aux I/O Module Input0 /

Input1 Value

0x08110000 I64 Ch R - X 282

Aux I/O Module Input0 /

Input1 Value

0x08110001 I64 Ch R - X 282

Aux Digital Input Value 0x080300AD I32 Mod R - X 284

Aux Digital Output Value / Set /

Clear

0x080300AE I32 Mod RW V X 285

Aux Digital Output Value / Set /

Clear

0x080300B0 I32 Mod W V X 285

Aux Digital Output Value / Set /

Clear

0x080300B1 I32 Mod W V X 285

Aux Analog Output Value0 /

Value1

0x08030000 I32 Mod RW V X 287

Aux Analog Output Value0 /

Value1

0x08030001 I32 Mod RW V X 287

I/O Module Properties

I/O Module Options 0x0603005D I32 Mod RW V X 289

I/O Module Voltage 0x06030031 I32 Mod RW V X 291

I/O Module Analog Input

Range

0x060300A0 I32 Mod RW V X 292

Input Trigger Properties

Device Input Trigger Mode 0x060D0087 I32 Dev RW V - 294

Device Input Trigger Condition 0x060D005A I32 Dev RW V - 296

Output Trigger Properties

Channel Output Trigger Mode 0x060E0087 I32 Ch RW V X 297

Continued on next page

155MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Table 4.1 – Continued from previous page

Property Code Type Idx Access V1 CG2 Page

Channel Output Trigger

Polarity

0x060E005B I32 Ch RW V X 299

Channel Output Trigger Pulse

Width

0x060E005C I32 Ch RW V X 300

Channel Position Compare

Start Threshold

0x060E0058 I64 Ch RW V X 301

Channel Position Compare

Increment

0x060E0059 I64 Ch RW V X 302

Channel Position Compare

Direction

0x060E0026 I32 Ch RW V X 303

Channel Position Compare

Limit Min

0x060E0020 I64 Ch RW V X 305

Channel Position Compare

Limit Max

0x060E0021 I64 Ch RW V X 307

Hand Control Module Properties

Hand Control Module Lock

Options

0x020C0083 I32 Dev RW V - 309

Hand Control Module Default

Lock Options

0x020C0084 I32 Dev RW NV - 311

API Properties

Event Notification Options 0xF010005D I32 API RW - - 312

Auto Reconnect 0xF01000A1 I32 API RW - - 314

1Volatility: This column defines if a property is stored in non-volatile memory. Non-Volatile properties need not be

configured on every power-up.
2Command Group: This column defines if a property may be used in command groups. See section 2.17 "Command

Groups" for more information.

156MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.3 Device Properties

4.3.1 Number of Channels

Definition Value

C-Definition SA_CTL_PKEY_NUMBER_OF_CHANNELS

Code 0x020F0017

ASCII-Command [:PROPerty]:DEVice:NOCHannels

Type Index Access Volatility Cmd-Group
Attributes

I32 Device R - -

Applicable for

USB Interface SA_CTL_INTERFACE_USB (0x0001)

Ethernet Interface SA_CTL_INTERFACE_ETHERNET (0x0002)

Description

This property holds the total number of channels the connected device has. It defines the valid

range for channel index parameters. The channel index is zero based. Therefore, the maximum

index is number of channels - 1.

Note that the number of channels does not represent the number of positioners that are currently

connected to the device.

Example

SA_CTL_Result_t result;

int32_t channels;

result = SA_CTL_GetProperty_i32(

dHandle, 0, SA_CTL_PKEY_NUMBER_OF_CHANNELS, &channels, 0

);

if (result == SA_CTL_ERROR_NONE) {

// ’channels’ holds the number of available channels of the device

}

See Also

4.3.2 Number of Bus Modules, 4.4.2 Number of Bus Module Channels

157MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.3.2 Number of Bus Modules

Definition Value

C-Definition SA_CTL_PKEY_NUMBER_OF_BUS_MODULES

Code 0x020F0016

ASCII-Command [:PROPerty]:DEVice:NOBModules

Type Index Access Volatility Cmd-Group
Attributes

I32 Device R - -

Applicable for

USB Interface SA_CTL_INTERFACE_USB (0x0001)

Ethernet Interface SA_CTL_INTERFACE_ETHERNET (0x0002)

Description

This property holds the number of modules the connected device has. It defines the valid range

for module index parameters. The module index is zero based. Therefore, the maximum index is

number of modules - 1.

Example

SA_CTL_Result_t result;

int32_t modules;

result = SA_CTL_GetProperty_i32(

dHandle, 0, SA_CTL_PKEY_NUMBER_OF_BUS_MODULES, &modules, 0

);

if (result == SA_CTL_ERROR_NONE) {

// ’modules’ holds the number of available modules of the device

}

See Also

4.4.2 Number of Bus Module Channels

158MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.3.3 Interface Type

Definition Value

C-Definition SA_CTL_PKEY_INTERFACE_TYPE

Code 0x020F0066

ASCII-Command [:PROPerty]:DEVice#:ITYPe

Type Index Access Volatility Cmd-Group
Attributes

I32 Device R - -

Applicable for

USB Interface SA_CTL_INTERFACE_USB (0x0001)

Ethernet Interface SA_CTL_INTERFACE_ETHERNET (0x0002)

Description

This property holds the type of the interface. The following types are defined:

Interface Type C-Definition Code

USB Interface SA_CTL_INTERFACE_USB 0x0001

Ethernet Interface SA_CTL_INTERFACE_ETHERNET 0x0002

See section 2.5 "Module Overview" for more information.

Example

SA_CTL_Result_t result;

int32_t type;

result = SA_CTL_GetProperty_i32(

dHandle, 0, SA_CTL_PKEY_INTERFACE_TYPE, &type, 0

);

if (result == SA_CTL_ERROR_NONE) {

// ’type’ holds the type of the interface

}

See Also

4.5.11 Channel Type, 4.4.3 Module Type

159MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.3.4 Device State

Definition Value

C-Definition SA_CTL_PKEY_DEVICE_STATE

Code 0x020F000F

ASCII-Command [:PROPerty]:DEVice:STATe

Type Index Access Volatility Cmd-Group
Attributes

I32 Device R - -

Applicable for

USB Interface SA_CTL_INTERFACE_USB (0x0001)

Ethernet Interface SA_CTL_INTERFACE_ETHERNET (0x0002)

Description

This property holds the device state. The value is a bit field containing independent flags. Their

meanings are described in section 2.10.1 "Device State Flags".

Undefined flags are reserved for future use. Therefore, the user software should not rely on a

static value of undefined flags.

Example

SA_CTL_Result_t result;

int32_t state;

result = SA_CTL_GetProperty_i32(

dHandle, 0, SA_CTL_PKEY_DEVICE_STATE, &state, 0

);

if (result == SA_CTL_ERROR_NONE) {

// use bit masking to extract the needed information from the state

if (state & SA_CTL_DEV_STATE_BIT_HM_PRESENT) {

// a hand controller is connected to the device

}

}

See Also

4.4.4 Module State, 4.5.12 Channel State

160MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.3.5 Device Serial Number

Definition Value

C-Definition SA_CTL_PKEY_DEVICE_SERIAL_NUMBER

Code 0x020F005E

ASCII-Command [:PROPerty]:DEVice:SNUMber

Type Index Access Volatility Cmd-Group
Attributes

String Device R - -

Applicable for

USB Interface SA_CTL_INTERFACE_USB (0x0001)

Ethernet Interface SA_CTL_INTERFACE_ETHERNET (0x0002)

Description

This property may be used to identify a device connected to the PC. Each device has a unique

serial number which makes it possible to distinguish one from another. The device serial number

consists of the global device name (‘MCS2‘) and an individual number.

Example

SA_CTL_Result_t result;

char deviceSn[SA_CTL_STRING_MAX_LENGTH];

size_t ioStrSize = sizeof(deviceSn);

result = SA_CTL_GetProperty_s(

dHandle,0,SA_CTL_PKEY_DEVICE_SERIAL_NUMBER,deviceSn,&ioStrSize

);

if (result == SA_CTL_ERROR_NONE) {

// ’deviceSn’ holds the serial number string, e.g. ’MCS2-00000001’

}

See Also

4.3.6 Device Name

161MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.3.6 Device Name

Definition Value

C-Definition SA_CTL_PKEY_DEVICE_NAME

Code 0x020F003D

ASCII-Command [:PROPerty]:DEVice:NAME

Type Index Access Volatility Cmd-Group
Attributes

String Device RW NV-P -

Applicable for

USB Interface SA_CTL_INTERFACE_USB (0x0001)

Ethernet Interface SA_CTL_INTERFACE_ETHERNET (0x0002)

Description

This property may be used to identify a device connected to the PC. In contrast to the device serial

number, the device name is writable by the user. The name is stored to non-volatile memory. By

default, the device name is set to the device serial number string. Note that the device name is not

reset to its default when performing a firmware update.

Example

SA_CTL_Result_t result;

char deviceName[SA_CTL_STRING_MAX_LENGTH];

size_t ioStringSize = sizeof(deviceName);

result = SA_CTL_GetProperty_s(

dHandle,0,SA_CTL_PKEY_DEVICE_NAME,deviceName,&ioStringSize

);

if (result == SA_CTL_ERROR_NONE) {

// ’deviceName’ holds the user defined name of the device

}

See Also

4.3.5 Device Serial Number

162MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.3.7 Emergency Stop Mode

Definition Value

C-Definition SA_CTL_PKEY_EMERGENCY_STOP_MODE

Code 0x020F0088

ASCII-Command [:PROPerty]:DEVice:ESTop:MODE

Type Index Access Volatility Cmd-Group
Attributes

I32 Device RW V -

Applicable for

USB Interface SA_CTL_INTERFACE_USB (0x0001)

Ethernet Interface SA_CTL_INTERFACE_ETHERNET (0x0002)

Description

This property specifies the emergency stop mode of the device. See section 2.20.2 "Emergency

Stop Mode" for more information.

The default value is SA_CTL_EMERGENCY_STOP_MODE_NORMAL (0).

Valid Range

SA_CTL_EMERGENCY_STOP_MODE_NORMAL (0),

SA_CTL_EMERGENCY_STOP_MODE_RESTRICTED (1),

SA_CTL_EMERGENCY_STOP_MODE_AUTO_RELEASE (2)

Example

// set emergency stop mode to normal mode

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_EMERGENCY_STOP_MODE,

SA_CTL_EMERGENCY_STOP_MODE_NORMAL

);

See Also

4.14.1 Device Input Trigger Mode

163MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.3.8 Network Discover Mode

Definition Value

C-Definition SA_CTL_PKEY_NETWORK_DISCOVER_MODE

Code 0x020F0159

ASCII-Command [:PROPerty]:DEVice:NETWork:DISCover:MODE

Type Index Access Volatility Cmd-Group
Attributes

I32 Device RW NV-P -

Applicable for

Ethernet Interface SA_CTL_INTERFACE_ETHERNET (0x0002)

Description

This property specifies the discover mode for devices with ethernet interface. The discover feature

allows to use the SA_CTL_FindDevices function to list devices with ethernet interface without

knowing the actual IP address. The MCS2 devices use broadcast packets to inform about their

presence in the network and for the discovery mechanism. This technique is quite common for

network devices like switches, routers, etc. However, some users might wish to limit the traffic in

a restricted network. Therefore, the behavior of the discovery mechanism is configurable.

The following modes are available:

Mode Name Short Description

0 SA_CTL_NETWORK_DISCOVER_MODE_DISABLED The discover feature is disabled. No

broadcast packets will be generated.

Devices will not be found by the

SA_CTL_FindDevices function.

1 SA_CTL_NETWORK_DISCOVER_MODE_PASSIVE The device will not generate packets

to inform about its presence but still

reacts to direct discover requests.

2 SA_CTL_NETWORK_DISCOVER_MODE_ACTIVE The device informs about its pres-

ence and reacts to all discover re-

quests.

See section 2.1 "Connecting and Disconnecting" for more information.

This property is stored to non-volatile memory and need not be configured on every power-up.

Note that the discover mode is not reset to its default when performing a firmware update. The

default value is SA_CTL_NETWORK_DISCOVER_MODE_ACTIVE (2).

164MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Example

// disable the network discover feature

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_NETWORK_DISCOVER_MODE,

SA_CTL_NETWORK_DISCOVER_MODE_DISABLED

);

See Also

3.2.4 SA_CTL_FindDevices

165MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.3.9 Network DHCP Timeout

Definition Value

C-Definition SA_CTL_PKEY_NETWORK_DHCP_TIMEOUT

Code 0x020F015C

ASCII-Command [:PROPerty]:DEVice:NETWork:DHCP:TIMeout

Type Index Access Volatility Cmd-Group
Attributes

I32 Device RW NV-P -

Applicable for

Ethernet Interface SA_CTL_INTERFACE_ETHERNET (0x0002)

Description

This property specifies the timeout in s for the DHCP client of the ethernet interface.

If the DHCP mode is enabled the controller will try to get an IP address automatically from a

DHCP server. If no server is available the interface will fall-back to the static IP settings after the

configured timeout has expired. If the maximum value of 3600 is configured the DHCP client will

never time out.

This setting has no meaning if the interface is configured with a static IP (DHCP mode disabled).

See section 2.1 "Connecting and Disconnecting" for more information.

This property is stored to non-volatile memory and need not be configured on every power-up.

Note that the DHCP timeout is not reset to its default when performing a firmware update. The

default value is 4 s.

Valid Range

4 . . . 3600 s

Example

// set the dhcp timeout to 1 min

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_NETWORK_DHCP_TIMEOUT,

60

);

166MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

See Also

3.2.4 SA_CTL_FindDevices

167MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.4 Module Properties

4.4.1 Power Supply Enabled

Definition Value

C-Definition SA_CTL_PKEY_POWER_SUPPLY_ENABLED

Code 0x02030010

ASCII-Command [:PROPerty]:MODule#:PSUPply[:ENABled]

Type Index Access Volatility Cmd-Group
Attributes

I32 Module RW V X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Description

This property enables or disables the positioner driver power supply of the module. Of course the

power supply must be enabled to perform positioner movements. Otherwise, if a movement is

commanded, the SA_CTL_EVENT_MOVEMENT_FINISHED event that is generated by the channel

will hold a SA_CTL_ERROR_POWER_SUPPLY_DISABLED error as parameter.

The default value is SA_CTL_ENABLED (0x01).

Valid Range

SA_CTL_DISABLED (0x00), SA_CTL_ENABLED (0x01)

Example

// switch off the driver power supply of the first module

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_POWER_SUPPLY_ENABLED, SA_CTL_DISABLED

);

See Also

4.5.2 Amplifier Enabled

168MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.4.2 Number of Bus Module Channels

Definition Value

C-Definition SA_CTL_PKEY_NUMBER_OF_BUS_MODULE_CHANNELS

Code 0x02030017

ASCII-Command [:PROPerty]:MODule#:NOMChannels

Type Index Access Volatility Cmd-Group
Attributes

I32 Module R - X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property holds the number of channels the addressed module has.

Example

SA_CTL_Result_t result;

int32_t modChannels;

result = SA_CTL_GetProperty_i32(

dHandle,0,SA_CTL_PKEY_NUMBER_OF_BUS_MODULE_CHANNELS,&modChannels,0

);

if (result == SA_CTL_ERROR_NONE) {

// ’modChannels’ holds the number of channel of the module 0

}

See Also

4.3.2 Number of Bus Modules, 4.3.1 Number of Channels

169MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.4.3 Module Type

Definition Value

C-Definition SA_CTL_PKEY_MODULE_TYPE

Code 0x02030066

ASCII-Command [:PROPerty]:MODule#:TYPE

Type Index Access Volatility Cmd-Group
Attributes

I32 Module R - -

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property holds the type of the module. The following types are defined:

Module / Channel Type C-Definition Code

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER 0x0001

Magnetic Driver SA_CTL_MAGNETIC_DRIVER 0x0002

Note that the Channel Type and Module Type properties share the same list of types.

See section 2.5 "Module Overview" for more information.

Example

SA_CTL_Result_t result;

int32_t type;

result = SA_CTL_GetProperty_i32(

dHandle, 0, SA_CTL_PKEY_MODULE_TYPE, &type, 0

);

if (result == SA_CTL_ERROR_NONE) {

// ’type’ holds the type of the first driver module of the device

}

See Also

4.3.3 Interface Type, 4.5.11 Channel Type

170MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.4.4 Module State

Definition Value

C-Definition SA_CTL_PKEY_MODULE_STATE

Code 0x0203000F

ASCII-Command [:PROPerty]:MODule#:STATe

Type Index Access Volatility Cmd-Group
Attributes

I32 Module R - X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property holds the module state. The value is a bit field containing independent flags. Their

meanings are described in section 2.10.2 "Module State Flags".

Undefined flags are reserved for future use. Therefore, the user software should not rely on a

static value of undefined flags.

Example

SA_CTL_Result_t result;

int32_t state;

result = SA_CTL_GetProperty_i32(

dHandle, 0, SA_CTL_PKEY_MODULE_STATE, &state, 0

);

if (result == SA_CTL_ERROR_NONE) {

// use bit masking to extract the needed information from the state

if (state & SA_CTL_MOD_STATE_BIT_SM_PRESENT) {

// a sensor module is connected to the module

}

}

See Also

4.3.4 Device State, 4.5.12 Channel State

171MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.5 Positioner Properties

4.5.1 Startup Options

Definition Value

C-Definition SA_CTL_PKEY_STARTUP_OPTIONS

Code 0x0A02005D

ASCII-Command [:PROPerty]:CHANnel#:STARtup:OPTions

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel RW NV X

Applicable for

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property defines the behavior of the channel after the startup of the device. The following

flags are available:

Bit C-Definition Code

0 SA_CTL_STARTUP_OPT_BIT_AMPLIFIER_ENABLE 0x00000001

Undefined flags are reserved for future use. These flags should be set to zero.

Amplifier Enable (Bit 0) The amplifier is enabled automatically on startup. This also starts the

phasing sequence and forces the channel into the holding state afterwards. Note that the

Sensor Power Mode must be configured to SA_CTL_SENSOR_MODE_ENABLED (1) for this

option to be operative.

This property is stored to non-volatile memory and need not be configured on every power-up.

The default value is 0 (all flags cleared).

Example

// enable the amplifier for channel 0 directly after startup

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_STARTUP_OPTIONS,

SA_CTL_STARTUP_OPT_BIT_AMPLIFIER_ENABLE

);

172MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

See Also

4.5.2 Amplifier Enabled, 4.5.27 Sensor Power Mode

173MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.5.2 Amplifier Enabled

Definition Value

C-Definition SA_CTL_PKEY_AMPLIFIER_ENABLED

Code 0x0302000D

ASCII-Command [:PROPerty]:CHANnel#:AMPLifier[:ENABled]

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel RW V X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property enables or disables the positioner driver amplifier of the channel. Of course the

amplifier must be enabled to perform positioner movements. Otherwise, if a movement is com-

manded, the SA_CTL_EVENT_MOVEMENT_FINISHED event that is generated by the channel will

hold a SA_CTL_ERROR_AMPLIFIER_DISABLED error as parameter. Disabling the amplifier im-

plicitly disables the control-loop and the channel enters the stopped state.

The Channel State bit SA_CTL_CH_STATE_BIT_AMPLIFIER_ENABLED reflects the state of the

amplifier.

Stick-Slip Piezo Driver

The default value is SA_CTL_ENABLED (0x01). The channel remains stopped after the amplifier

is enabled until a closed-loop movement is commanded.

Magnetic Driver

The default value is SA_CTL_DISABLED (0x00). If the channel is not phased when enabling the

amplifier the phasing sequence is automatically started and the positioner enters the closed-loop

holding state after the phasing has finished. See section 2.22 "Phasing of Magnetic Driven Posi-

tioners" for more information.

The channel may be configured to automatically enable the amplifier at startup. (See Startup

Options property.)

174MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

WARNING
Magnetic driven positioners are not self-locking. Disabling the control-loop re-

moves any holding force from the positioner. Make sure not to damage any

equipment when the positioner changes its position unintentionally!

Valid Range

SA_CTL_DISABLED (0x00), SA_CTL_ENABLED (0x01)

Example

// switch off the driver power amplifier of the first channel

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_AMPLIFIER_ENABLED, SA_CTL_DISABLED

);

See Also

4.5.3 Amplifier Mode, 4.4.1 Power Supply Enabled, 4.5.1 Startup Options

175MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.5.3 Amplifier Mode

Definition Value

C-Definition SA_CTL_PKEY_AMPLIFIER_MODE

Code 0x030200BF

ASCII-Command [:PROPerty]:CHANnel#:AMPLifier:MODE

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel RW NV X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Description

This property controls the behavior of the positioner driver amplifier.

In SA_CTL_AMP_MODE_DEFAULTmode the amplifier is automatically enabled on power-up of the

device. It remains enabled regardless of whether a positioner is connected to the channel or not.

In SA_CTL_AMP_MODE_POSITIONER_INTERLOCK mode the amplifier is automatically disabled

when the positioner is detached from the channel and enabled when a positioner is attached to

the channel. Note that the interlock is triggered by the sensor presence detection which only

works for positioners with integrated sensors.

At any time the amplifier may be enabled or disabled manually by setting the Amplifier Enabled

property.

This property is stored to non-volatile memory and need not be configured on every power-up.

The default value is SA_CTL_AMP_MODE_DEFAULT (0).

Valid Range

SA_CTL_AMP_MODE_DEFAULT (0),

SA_CTL_AMP_MODE_POSITIONER_INTERLOCK (1)

Example

// configure ’positioner interlock’ amplifier mode for the first channel

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_AMPLIFIER_MODE,

SA_CTL_AMP_MODE_POSITIONER_INTERLOCK

);

176MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

See Also

4.5.2 Amplifier Enabled, 4.4.1 Power Supply Enabled

177MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.5.4 Positioner Control Options

Definition Value

C-Definition SA_CTL_PKEY_POSITIONER_CONTROL_OPTIONS

Code 0x0302005D

ASCII-Command [:PROPerty]:CHANnel#:PCONtrol:OPTions

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel RW NV X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property defines several positioner control related options. The value is a bit field containing

independent flags. The following flags are available:

Bit C-Definition Code

0 SA_CTL_POS_CTRL_OPT_BIT_ACC_REL_POS_DIS 0x00000001

1 SA_CTL_POS_CTRL_OPT_BIT_NO_SLIP1 0x00000002

2 SA_CTL_POS_CTRL_OPT_BIT_NO_SLIP_WHILE_HOLDING1 0x00000004

3 SA_CTL_POS_CTRL_OPT_BIT_FORCED_SLIP_DIS1,3 0x00000008

4 SA_CTL_POS_CTRL_OPT_BIT_STOP_ON_FOLLOWING_ERR 0x00000010

5 SA_CTL_POS_CTRL_OPT_BIT_TARGET_TO_ZERO_VOLTAGE1,3 0x00000020

6 SA_CTL_POS_CTRL_OPT_BIT_CL_DIS_ON_FOLLOWING_ERR2 0x00000040

7 SA_CTL_POS_CTRL_OPT_BIT_CL_DIS_ON_EMERGENCY_STOP2 0x00000080

Undefined flags are reserved for future use. These flags should be set to zero.

This property is stored to non-volatile memory and need not be configured on every power-up.

The default value is 0 (all flags cleared).

See section 2.7.4 "Closed-Loop Movements" for a more detailed description of the positioner con-

trol options flags.

1This option is only applicable for Stick-Slip Piezo Driver.
2This option is only applicable for Magnetic Driver.
3This option has no effect for dual-piezo hybrid positioners.

178MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Example

// enable the "no-slip-while-holding" feature for channel 0

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_POSITIONER_CONTROL_OPTIONS,

SA_CTL_POS_CTRL_OPT_BIT_NO_SLIP_WHILE_HOLDING

);

See Also

4.5.10 Move Mode, 4.5.5 Actuator Mode

179MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.5.5 Actuator Mode

Definition Value

C-Definition SA_CTL_PKEY_ACTUATOR_MODE

Code 0x03020019

ASCII-Command [:PROPerty]:CHANnel#:ACTuator:MODE

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel RW V -

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Description

This property specifies the type of driving signal generation. See section 2.7.4 "Closed-Loop Move-

ments" for a more detailed description of the actuator modes. It is not allowed to change the

actuator mode during an ongoing movement. In that case a SA_CTL_ERROR_BUSY_MOVING er-

ror is returned.

Note that the low vibrationmode requires the velocity and acceleration control to be active. If the

velocity control is not already enabled (move velocity != 0), the move velocity is set implicitly to a

default velocity of 10× 109. If the acceleration control is not already enabled (move acceleration

!= 0), the move acceleration is set implicitly to a default acceleration of 100× 109.

Note that all referencing movements are performed with the normal mode even if this property is

configured to SA_CTL_ACTUATOR_MODE_LOW_VIBRATION.

The default mode is SA_CTL_ACTUATOR_MODE_NORMAL (0).

Valid Range

SA_CTL_ACTUATOR_MODE_NORMAL (0),

SA_CTL_ACTUATOR_MODE_QUIET (1),

SA_CTL_ACTUATOR_MODE_LOW_VIBRATION (2)

NOTICE
The low vibration actuator mode needs a feature permission to be activated on

the controller. See section 2.23 "Feature Permissions" for more information.

180MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Example

SA_CTL_Result_t result;

int8_t channelIdx = 0;

// configure the ‘quiet‘ actuator mode for channel 0

result = SA_CTL_SetProperty_i32(

dHandle,

channelIdx,

SA_CTL_PKEY_ACTUATOR_MODE,

SA_CTL_ACTUATOR_MODE_QUIET

);

See Also

4.5.18 Move Velocity, 4.5.19 Move Acceleration, 4.5.10 Move Mode, 4.5.4 Positioner Control Op-

tions

181MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.5.6 Control Loop Input

Definition Value

C-Definition SA_CTL_PKEY_CONTROL_LOOP_INPUT

Code 0x03020018

ASCII-Command [:PROPerty]:CHANnel#:CLINput[:SELect]

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel RW NV X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property specifies which signal is used as input for the control-loop. For the majority of appli-

cations this property will be set to SA_CTL_CONTROL_LOOP_INPUT_SENSOR, meaning the inte-

grated sensor of the positioner is used as feedback signal for the control-loop.

Nonetheless it is also possible to use external signals. E.g. an analog voltage derived from a force

sensor can be feed into an analog input of the MCS2 I/O module to implement a force feedback

control for a gripper. Set this property to SA_CTL_CONTROL_LOOP_INPUT_AUX_IN to use one

of the auxiliary inputs as control-loop feedback. Please refer to section 2.19.5 "Using Analog Inputs

as Control-Loop Feedback" for more information on the auxiliary configuration.

In some cases it may be useful to prohibit the closed-loop operation of a channel. This can be

achieved by setting this property to SA_CTL_CONTROL_LOOP_INPUT_DISABLED.

A SA_CTL_ERROR_CONTROL_LOOP_INPUT_DISABLED error will be generated when trying to

command a closed-loop movement in this case.

This property is stored to non-volatile memory and need not be configured on every power-up.

The default input is SA_CTL_CONTROL_LOOP_INPUT_SENSOR (1).

Note that setting this property implicitly stops the channel and disables the control-loop.

WARNING
Magnetic driven positioners are not self-locking. Disabling the control-loop re-

moves any holding force from the positioner. Make sure not to damage any

equipment when the positioner changes its position unintentionally!

182MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Valid Range

SA_CTL_CONTROL_LOOP_INPUT_DISABLED (0),

SA_CTL_CONTROL_LOOP_INPUT_SENSOR (1),

SA_CTL_CONTROL_LOOP_INPUT_AUX_IN (2)

Example

SA_CTL_Result_t result;

int8_t channelIdx = 0;

// configure the sensor as input for the control-loop for channel 0

result = SA_CTL_SetProperty_i32(

dHandle,

channelIdx,

SA_CTL_PKEY_CONTROL_LOOP_INPUT,

SA_CTL_CONTROL_LOOP_INPUT_SENSOR

);

See Also

4.5.7 Sensor Input Select

183MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.5.7 Sensor Input Select

Definition Value

C-Definition SA_CTL_PKEY_SENSOR_INPUT_SELECT

Code 0x0302009D

ASCII-Command [:PROPerty]:CHANnel#:CLINput:SENSor:SELect

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel RW NV X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property specifies which sensor signal is used for the ‘sensor‘ input of the control-loop input

mux. (See Control Loop Input property.) The property is only relevant if a SmarAct PicoScale laser

interferometer is connected as sensor module. The PicoScale calculation system can perform var-

ious calculations with different values of the device, in particular even from different channels.

The calculation system may then be used to generate a control-loop input signal for the MCS2

channel. Set this property to SA_CTL_SENSOR_INPUT_SELECT_CALC_SYS to configure the cal-

culation system. Please refer to section 2.12 "PicoScale Sensor Module" and figure 2.11 "Auxiliary

Input Configuration (per channel)" for more information.

This property is stored to non-volatile memory and need not be configured on every power-up.

The default input is SA_CTL_SENSOR_INPUT_SELECT_POSITION (0).

Valid Range

SA_CTL_SENSOR_INPUT_SELECT_POSITION (0),

SA_CTL_SENSOR_INPUT_SELECT_CALC_SYS (1)

Example

SA_CTL_Result_t result;

int8_t channelIdx = 0;

// configure the PSC calculation system as input

// for the control-loop for channel 0

result = SA_CTL_SetProperty_i32(

dHandle,

channelIdx,

SA_CTL_PKEY_SENSOR_INPUT_SELECT,

SA_CTL_SENSOR_INPUT_SELECT_CALC_SYS

184MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

);

See Also

4.5.6 Control Loop Input

185MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.5.8 Positioner Type

Definition Value

C-Definition SA_CTL_PKEY_POSITIONER_TYPE

Code 0x0302003C

ASCII-Command [:PROPerty]:CHANnel#:PTYPe[:CODE]

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel RW NV X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

The positioner type tells the channel what type of positioner is connected. The type implicitly gives

the controller information about how to calculate positions, handle the referencing and configure

the control-loop.

The positioner type configuration differs depending onwhether the positioner and driver supports

the SmarAct Positioner ID System. See section 2.5 "Module Overview" for more information about

the supported features of the different driver modules.

If the positioner type of a channel is changed, the positioner is stopped implicitly. (For Magnetic

Driver channels the amplifier is disabled.) Furthermore the calibration (and phasing) becomes

invalid and the physical position becomes unknown. The Channel State bits:

• SA_CTL_CH_STATE_BIT_IS_CALIBRATED,

• SA_CTL_CH_STATE_BIT_IS_REFERENCED and

• SA_CTL_CH_STATE_BIT_IS_PHASED*

are reset to zero to indicate this.

The positioner type is read as SA_CTL_POSITIONER_TYPE_MODIFIED (0) if tuning parameters

of a channel are modified and as long as the modified positioner type was not saved to a custom

slot. See section 2.6 "Positioner Types" for more information.

Note that SA_CTL_Calibratemust be called to ensure proper operation of the positioner if the

positioner type was changed.

Manual Positioner Type Configuration

The positioner type must be configured with this property to match the connected positioner.

Each channel stores the type setting to non-volatile memory. Consequently, there is no need to

set this property on every initialization.

*This channel state bit is only valid for Magnetic Driver.

186MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Valid Range

Please refer to the MCS2 Positioner Types document for a list of valid positioner type codes.

Automatic Positioner Type Configuration

In case the positioner type is automatically detected and configured when the positioner is at-

tached to the channel, the write access to this property is restricted to custom positioner types

and to the special automatic positioner type value. Writing a different positioner type returns a

SA_CTL_ERROR_POSITIONER_TYPE_NOT_WRITEABLE error.

Valid Range

SA_CTL_POSITIONER_TYPE_AUTOMATIC (299),

SA_CTL_POSITIONER_TYPE_CUSTOM0 (250),

SA_CTL_POSITIONER_TYPE_CUSTOM1 (251),

SA_CTL_POSITIONER_TYPE_CUSTOM2 (252),

SA_CTL_POSITIONER_TYPE_CUSTOM3 (253)

Example

// set the ‘custom0‘ positioner type for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_POSITIONER_TYPE,

SA_CTL_POSITIONER_TYPE_CUSTOM0

);

187MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.5.9 Positioner Type Name

Definition Value

C-Definition SA_CTL_PKEY_POSITIONER_TYPE_NAME

Code 0x0302003D

ASCII-Command [:PROPerty]:CHANnel#:PTYPe:NAME

Type Index Access Volatility Cmd-Group
Attributes

String Channel R - -

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property holds a descriptive name of the configured positioner type. The positioner type

name is a null terminated string. Note that the name is read-only.

Example

SA_CTL_Result_t result;

char name[SA_CTL_STRING_MAX_LENGTH];

size_t ioStringSize = sizeof(name);

result = SA_CTL_GetProperty_s(

dHandle, 0, SA_CTL_PKEY_POSITIONER_TYPE_NAME, name, &ioStringSize

);

if (result == SA_CTL_ERROR_NONE) {

// ’name’ holds the name of the configured positioner type

}

See Also

4.5.8 Positioner Type

188MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.5.10 Move Mode

Definition Value

C-Definition SA_CTL_PKEY_MOVE_MODE

Code 0x03050087

ASCII-Command [:PROPerty]:CHANnel#:MMODe

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel RW V X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property specifies which movement mode is used when commanding a positioner movement

using SA_CTL_Move. Depending on the configured move mode the move value parameter of the

SA_CTL_Move function is interpreted differently. See section 2.7.3 "Open-Loop Movements" and

2.7.4 "Closed-Loop Movements" for a description of all related properties for the different move

modes.

The default mode is SA_CTL_MOVE_MODE_CL_ABSOLUTE (0).

Valid Range

SA_CTL_MOVE_MODE_CL_ABSOLUTE (0),

SA_CTL_MOVE_MODE_CL_RELATIVE (1),

SA_CTL_MOVE_MODE_SCAN_ABSOLUTE (2)*,

SA_CTL_MOVE_MODE_SCAN_RELATIVE (3)*,

SA_CTL_MOVE_MODE_STEP (4)*

Example

SA_CTL_Result_t result;

int8_t channelIdx = 0;

// configure an open-loop step movement with full amplitude at 2kHz

result = SA_CTL_SetProperty_i32(

dHandle,channelIdx, SA_CTL_PKEY_MOVE_MODE, SA_CTL_MOVE_MODE_STEP

);

if (result) {// handle error, abort}

result = SA_CTL_SetProperty_i32(

dHandle,channelIdx, SA_CTL_PKEY_STEP_AMPLITUDE, 65535

*This mode is only applicable for Stick-Slip Piezo Driver.

189MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

);

if (result) {// handle error, abort}

result = SA_CTL_SetProperty_i32(

dHandle,channelIdx, SA_CTL_PKEY_STEP_FREQUENCY, 2000

);

if (result == SA_CTL_ERROR_NONE) {

// perform 100 steps

result = SA_CTL_Move(

dHandle, channelIdx, 100

);

}

See Also

4.5.22 Step Frequency, 4.5.23 Step Amplitude

190MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.5.11 Channel Type

Definition Value

C-Definition SA_CTL_PKEY_CHANNEL_TYPE

Code 0x02020066

ASCII-Command [:PROPerty]:CHANnel#:TYPE

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel R - -

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property holds the type of the channel. The following types are defined:

Module / Channel Type C-Definition Code

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER 0x0001

Magnetic Driver SA_CTL_MAGNETIC_DRIVER 0x0002

Note that the Channel Type and Module Type properties share the same list of types.

See section 2.5 "Module Overview" for more information.

Example

SA_CTL_Result_t result;

int32_t type;

result = SA_CTL_GetProperty_i32(

dHandle, 0, SA_CTL_PKEY_CHANNEL_TYPE, &type, 0

);

if (result == SA_CTL_ERROR_NONE) {

// ’type’ holds the type of the first channel

}

See Also

4.3.3 Interface Type, 4.4.3 Module Type

191MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.5.12 Channel State

Definition Value

C-Definition SA_CTL_PKEY_CHANNEL_STATE

Code 0x0305000F

ASCII-Command [:PROPerty]:CHANnel#:STATe

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel R - X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property holds the channel state. The value is a bit field containing independent flags. Their

meaning is described in section 2.10.3 "Channel State Flags".

Undefined flags are reserved for future use. Therefore, the user software should not rely on a

static value of undefined flags.

Example

SA_CTL_Result_t result;

int8_t channelIdx = 0;

int32_t state;

result = SA_CTL_GetProperty_i32(

dHandle, channelIdx, SA_CTL_PKEY_CHANNEL_STATE, &state, 0

);

if (result == SA_CTL_ERROR_NONE) {

// use bit masking to determine the channels movement state

if ((state & (SA_CTL_CH_STATE_BIT_ACTIVELY_MOVING |

SA_CTL_CH_STATE_BIT_CLOSED_LOOP_ACTIVE)) == 0) {

// positioner is stopped

}

}

See Also

4.3.4 Device State, 4.4.4 Module State

192MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.5.13 Position

Definition Value

C-Definition SA_CTL_PKEY_POSITION

Code 0x0305001D

ASCII-Command [:PROPerty]:CHANnel#:POSition[:CURRent]

Type Index Access Volatility Cmd-Group
Attributes

I64 Channel RW V X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property holds the current position of a positioner. Note that it can only be used for posi-

tioners that have a sensor attached to it. To determine if a sensor is present the Channel State bit

SA_CTL_CH_STATE_BIT_SENSOR_PRESENTmay be polled.

The interpretation of the read position value depends on the configured positioner type. The unit

is pico meter (pm) for linear positioners and nano degree (n°) for rotatory positioners.

Read the Positioner Base Unit property to distinguish between linear and rotatory positioner type.

The position may be set to define the logical scale. See section 2.8.5 "Shifting the Measuring

Scale" for more information. Note that is is not allowed to set the position while a calibration

or referencing sequence is running. In that case a SA_CTL_ERROR_BUSY_CALIBRATING or

SA_CTL_ERROR_BUSY_REFERENCING error is returned.

Valid Range

−100× 1012 . . . 100× 1012 pm or n°

Example

SA_CTL_Result_t result;

int64_t position;

result = SA_CTL_GetProperty_i64(

dHandle, 0, SA_CTL_PKEY_POSITION, &position, 0

);

if (result == SA_CTL_ERROR_NONE) {

// ‘position‘ holds the current position of channel 0

}

193MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

See Also

4.9.3 Positioner Base Unit, 4.9.4 Positioner Base Resolution

194MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.5.14 Target Position

Definition Value

C-Definition SA_CTL_PKEY_TARGET_POSITION

Code 0x0305001E

ASCII-Command [:PROPerty]:CHANnel#:POSition:TARGet

Type Index Access Volatility Cmd-Group
Attributes

I64 Channel R - X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property holds the target position of a channel for the current closed-loop movement.

See Also

4.5.13 Position

195MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.5.15 Scan Position

Definition Value

C-Definition SA_CTL_PKEY_SCAN_POSITION

Code 0x0305001F

ASCII-Command [:PROPerty]:CHANnel#:POSition:SCAN

Type Index Access Volatility Cmd-Group
Attributes

I64 Channel R - X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Description

This property holds the current scan position of a positioner. The scan position represents the

voltage level that is currently applied to the piezo element of a positioner.

This property is mainly of interest when using the SA_CTL_MOVE_MODE_SCAN_ABSOLUTE and

SA_CTL_MOVE_MODE_SCAN_RELATIVEMove Modes, since these modes are used to control the

scan position.

The scan position is given in 16-bit increments from 0 . . . 65 535, where 0 corresponds to 0V and

65535 to 100V.

Example

SA_CTL_Result_t result;

int64_t position;

result = SA_CTL_GetProperty_i64(

dHandle, 0, SA_CTL_PKEY_SCAN_POSITION, &position, 0

);

if (result == SA_CTL_ERROR_NONE) {

// ‘position‘ holds the current scan position of channel 0

}

See Also

4.5.16 Scan Velocity, 4.5.10 Move Mode

196MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.5.16 Scan Velocity

Definition Value

C-Definition SA_CTL_PKEY_SCAN_VELOCITY

Code 0x0305002A

ASCII-Command [:PROPerty]:CHANnel#:SCAN:VELocity

Type Index Access Volatility Cmd-Group
Attributes

I64 Channel RW V X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Description

This property specifies the scan velocity of a positioner. The scan velocity is given in 16-bit in-

crements per second. With a value of 1 a scan over the full range from 0 to 65535 takes 65535

seconds while at maximum velocity the scan is performed in one micro second.

To perform a scan movement via the SA_CTL_Move function, the Move Mode property must be

set to SA_CTL_MOVE_MODE_SCAN_ABSOLUTE or SA_CTL_MOVE_MODE_SCAN_RELATIVE first.

The default value is 65535.

Valid Range

1 . . . 65 535000000

Example

// set the scan velocity for channel 0

// (full range scan in 1 second)

result = SA_CTL_SetProperty_i64(

dHandle, 0, SA_CTL_PKEY_SCAN_VELOCITY, 65535

);

See Also

4.5.15 Scan Position, 4.5.10 Move Mode

197MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.5.17 Hold Time

Definition Value

C-Definition SA_CTL_PKEY_HOLD_TIME

Code 0x03050028

ASCII-Command [:PROPerty]:CHANnel#:HOLDtime

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel RW V X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Description

This property specifies how long (in ms) the position is actively held after reaching the target posi-

tion. After the hold time elapsed the channel is stopped and the control-loop is disabled.

The Channel State bit SA_CTL_CH_STATE_BIT_CLOSED_LOOP_ACTIVE will be read as one as

long as the the position is actively held.

The holdtime is interpreted as unsigned integer. A value of 0 deactivates this feature, a value of

SA_CTL_INFINITE (0xffffffff) sets the channel to infinite holding. (until manually stopped

with SA_CTL_Stop).

Note that the end stop detection is still active in holding state. If a positioner is moved away from

the target position by external forces and the channel is not able to hold the target position for a

longer time an end stop is triggered. A SA_CTL_EVENT_HOLDING_ABORTED event is generated

to notify about this and the channel is stopped.

The default hold time is SA_CTL_INFINITE.

Valid Range

0 . . .0xffffffff

Example

// set hold time for channel 0 to infinite holding

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_HOLD_TIME, SA_CTL_INFINITE

);

198MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

See Also

4.5.10 Move Mode

199MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.5.18 Move Velocity

Definition Value

C-Definition SA_CTL_PKEY_MOVE_VELOCITY

Code 0x03050029

ASCII-Command [:PROPerty]:CHANnel#:VELocity

Type Index Access Volatility Cmd-Group
Attributes

I64 Channel RW V X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property specifies the velocity of a positioner for closed-loop movement commands. The

value is given in pms−1 for linear positioners and in n° s−1 for rotary positioners.

Note that the move velocity also applies to movements executed during the find reference se-

quence (see SA_CTL_Reference).

Stick-Slip Piezo Driver

If a velocity > 0 is configured, all following closed-loop movement commands will be executed with

velocity control.

Note that the channel will not drive the positioner with frequencies above the maximum allowed

frequency (see Max Closed Loop Frequency). If the maximum frequency is set too low for a certain

velocity, then the velocity might not be reached or held since the driver will cap at the maximum

driving frequency. In this case increase the maximum frequency.

The default value is 0, meaning that the velocity control is inactive. In this state the behavior of

closed-loop commands is influenced by the maximum driving frequency (see Max Closed Loop

Frequency).

It is not allowed to enable or disable the velocity control during an ongoing movement. In that case

a SA_CTL_ERROR_BUSY_MOVING error is returned. Anyway,modifying the velocity of an ongoing

movement is possible.

Valid Range (Stick-Slip Piezo Driver)

0 . . . 100× 109

200MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Magnetic Driver

The velocity and acceleration control must be used for all movements to define the move velocity

resp. the acceleration, since there is no additional limiting parameter for magnetic driven posi-

tioners (like the Max Closed Loop Frequency for piezo driven positioners). The default value is

1× 109.

Valid Range (Magnetic Driver)

1 . . . 100× 1012

Example

// enable velocity control by configuring 1mm/s for channel 0

result = SA_CTL_SetProperty_i64(

dHandle, 0, SA_CTL_PKEY_MOVE_VELOCITY, 1e9

);

See Also

4.5.19 Move Acceleration, 4.5.10 Move Mode, 4.5.20 Max Closed Loop Frequency

201MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.5.19 Move Acceleration

Definition Value

C-Definition SA_CTL_PKEY_MOVE_ACCELERATION

Code 0x0305002B

ASCII-Command [:PROPerty]:CHANnel#:ACCeleration

Type Index Access Volatility Cmd-Group
Attributes

I64 Channel RW V X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property specifies the acceleration of a positioner for closed-loop movement commands. The

value is given in pms−2 for linear positioner and in n° s−2 for rotary positioners.

Note that the move acceleration also applies to movements executed during the find reference

sequence (see SA_CTL_Reference).

NOTICE
For closed-loop movements with enabled acceleration control a SA_CTL_Stop

command instructs the positioner to come to a halt by decelerating to zero ve-

locity. A second "stop" command triggers a hard stop.

Stick-Slip Piezo Driver

If an acceleration > 0 is configured, all following closed-loop movement commands will be exe-

cuted with acceleration control. The acceleration control requires the velocity control to be en-

abled too (Move Velocity > 0).

The default value is 0, meaning that the acceleration control is inactive.

It is not allowed to enable or disable the acceleration control during an ongoing movement. In that

case a SA_CTL_ERROR_BUSY_MOVING error is returned. Anyway, modifying the acceleration of

an ongoing movement is possible.

Valid Range (Stick-Slip Piezo Driver)

0 . . . 10× 1012

202MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Magnetic Driver

The velocity and acceleration control must be used for all movements to define the move velocity

resp. the acceleration, since there is no additional limiting parameter for magnetic driven posi-

tioners (like the Max Closed Loop Frequency for piezo driven positioners). The default value is

100× 109.

Valid Range (Magnetic Driver)

1 . . . 100× 1012

Example

// enable acceleration control by configuring 1mm/s2 for channel 0

result = SA_CTL_SetProperty_i64(

dHandle, 0, SA_CTL_PKEY_MOVE_ACCELERATION, 1e9

);

See Also

4.5.18 Move Velocity, 4.5.10 Move Mode

203MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.5.20 Max Closed Loop Frequency

Definition Value

C-Definition SA_CTL_PKEY_MAX_CL_FREQUENCY

Code 0x0305002F

ASCII-Command [:PROPerty]:CHANnel#:MCLFrequency[:CURRent]

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel RW V X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Description

This property specifies the maximum frequency that a stick-slip piezo positioner is driven with

when issuing closed-loop movement commands.

The maximum allowed frequency depends on the actual positioner as well as the environment.

(E.g. HV and UHV environment requires lower allowed frequencies.)

This property is not held in non-volatile memory but the default value at device startup is config-

urable (see Default Max Closed Loop Frequency).

Valid Range

50 . . . 20 000Hz

Example

// set maximum closed-loop frequency to 3kHz for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_MAX_CL_FREQUENCY, 3000

);

See Also

4.5.21 Default Max Closed Loop Frequency

204MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.5.21 Default Max Closed Loop Frequency

Definition Value

C-Definition SA_CTL_PKEY_DEFAULT_MAX_CL_FREQUENCY

Code 0x03050057

ASCII-Command [:PROPerty]:CHANnel#:MCLFrequency:DEFault

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel RW NV X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Description

This property specifies the default value at device startup for themaximum closed-loop frequency.

The default frequency is 5000Hz.

Valid Range

50 . . . 20 000Hz

Example

// set default maximum closed-loop frequency

// at start up to 6kHz for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_DEFAULT_MAX_CL_FREQUENCY, 6000

);

See Also

4.5.20 Max Closed Loop Frequency

205MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.5.22 Step Frequency

Definition Value

C-Definition SA_CTL_PKEY_STEP_FREQUENCY

Code 0x0305002E

ASCII-Command [:PROPerty]:CHANnel#:STEP:FREQuency

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel RW V X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Description

This property specifies the frequency in Hz that open-loop steps are performed with. To perform

open-loop steps by using the SA_CTL_Move function, the Move Mode property must be set to

SA_CTL_MOVE_MODE_STEP first. See section 2.7.3 "Open-Loop Movements" for more informa-

tion.

The default frequency is 1000Hz.

Valid Range

1 . . . 20 000Hz

Example

// set the step frequency to 1kHz for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_STEP_FREQUENCY, 1000

);

See Also

4.5.23 Step Amplitude, 4.5.10 Move Mode

206MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.5.23 Step Amplitude

Definition Value

C-Definition SA_CTL_PKEY_STEP_AMPLITUDE

Code 0x03050030

ASCII-Command [:PROPerty]:CHANnel#:STEP:AMPLitude

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel RW V X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Description

This property specifies the amplitude that open-loop steps are performed with. The Move Mode

property must be set to SA_CTL_MOVE_MODE_STEP first, before open-loop steps may be per-

formed with the SA_CTL_Move function. See section 2.7.3 "Open-Loop Movements" for more

information.

Lower amplitude values result in a smaller step width. The step amplitude is a 16bit value from 1

. . . 65 535, where 65535 corresponds to 100V.

The default amplitude is 65535 (100V).

Valid Range

1 . . . 65 535

Example

// set the step amplitude to maximum (100V) for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_STEP_AMPLITUDE, 65535

);

See Also

4.5.22 Step Frequency, 4.5.10 Move Mode

207MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.5.24 Following Error

Definition Value

C-Definition SA_CTL_PKEY_FOLLOWING_ERROR

Code 0x03020055

ASCII-Command [:PROPerty]:CHANnel#:FERRor

Type Index Access Volatility Cmd-Group
Attributes

I64 Channel R - X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property holds the current following error in pm for linear positioners and in n° for rotary po-

sitioners while performing a closed-loop movement. Note that the following error is only available

for movements with velocity control enabled (Move Velocity > 0) and while performing Trajectory

Streaming.

Example

SA_CTL_Result_t result;

int64_t error;

result = SA_CTL_GetProperty_i64(

dHandle, 0, SA_CTL_PKEY_FOLLOWING_ERROR, &error, 0

);

if (result == SA_CTL_ERROR_NONE) {

// ‘error‘ holds the current following error of channel 0

}

See Also

4.5.25 Following Error Limit, 4.5.18 Move Velocity

208MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.5.25 Following Error Limit

Definition Value

C-Definition SA_CTL_PKEY_FOLLOWING_ERROR_LIMIT

Code 0x03050055

ASCII-Command [:PROPerty]:CHANnel#:FELimit

Type Index Access Volatility Cmd-Group
Attributes

I64 Channel RW NV X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property specifies the limit for the following error detection. The value is given in pm for linear

positioners and in n° for rotary positioners. Setting the following error limit to zero disables the

detection. See section 2.14 "Following Error Detection" for more information.

This property is stored to non-volatile memory and need not be configured on every power-up.

The default value is 0 (disabled).

Valid Range

0 . . . 100× 1012

Example

// set following error limit to 100um for channel 0

result = SA_CTL_SetProperty_i64(

dHandle, 0, SA_CTL_PKEY_FOLLOWING_ERROR_LIMIT, 100000000

);

See Also

4.5.24 Following Error, 4.5.4 Positioner Control Options, 4.5.18 Move Velocity

209MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.5.26 Broadcast Stop Options

Definition Value

C-Definition SA_CTL_PKEY_BROADCAST_STOP_OPTIONS

Code 0x0305005D

ASCII-Command [:PROPerty]:CHANnel#:BSOPtions

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel RW V X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property specifies the behavior of a broadcast stop of a channel. It is typically useful when

multiple channels are moving simultaneously and an end stop (or range limit) on one channel

should cause a halt on all other channels. See section 2.16 "Stop Broadcasting" for more informa-

tion.

The value is a bit field containing independent flags with the following meaning:

Bit C-Definition Code

0 SA_CTL_STOP_OPT_BIT_END_STOP_REACHED 0x00000001

1 SA_CTL_STOP_OPT_BIT_RANGE_LIMIT_REACHED 0x00000002

2 SA_CTL_STOP_OPT_BIT_FOLLOWING_LIMIT_REACHED 0x00000004

Undefined flags are reserved for future use. These flags should be set to zero.

This property is stored to non-volatile memory and need not be configured on every power-up.

The default value is 0 (all flags cleared).

Example

// enable stop broadcasting of channel 0 for end stops and range limits

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_BROADCAST_STOP_OPTIONS,

(SA_CTL_STOP_OPT_BIT_END_STOP_REACHED |

SA_CTL_STOP_OPT_BIT_RANGE_LIMIT_REACHED)

);

210MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.5.27 Sensor Power Mode

Definition Value

C-Definition SA_CTL_PKEY_SENSOR_POWER_MODE

Code 0x03080019

ASCII-Command [:PROPerty]:CHANnel#:SENSor:MODE

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel RW NV X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property specifies the sensor powermode. It may be used to activate or deactivate the sensor

that is attached to the positioner. It effectively turns the power supply of the sensor on or off.

Please refer to section 2.11 "Sensor Power Modes" for more information on the sensor power

modes.

Note that setting this property implicitly stops the channel and disables the control-loop.

The following sensor power modes are available:

Mode Name Short Description

0 SA_CTL_SENSOR_MODE_DISABLED The sensor power supply is turned off

continuously.

1 SA_CTL_SENSOR_MODE_ENABLED The sensor is continuously supplied with

power.

2 SA_CTL_SENSOR_MODE_POWER_SAVE* The sensor power supply is pulsed to keep

the heat generation low.

This property is stored to non-volatile memory and need not be configured on every power-up.

The default value is SA_CTL_SENSOR_MODE_ENABLED (1).

Magnetic Driver

Changing the sensor power mode for Magnetic Driver channels also disables the amplifier the

invalidates the phasing. See section 2.22 "Phasing of Magnetic Driven Positioners" for more infor-

mation.

*The power save mode is only available for Stick-Slip Piezo Driver.

211MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

WARNING
Magnetic driven positioners are not self-locking. Disabling the control-loop re-

moves any holding force from the positioner. Make sure not to damage any

equipment when the positioner changes its position unintentionally!

Example

// set power save mode for the sensor of channel 0

result = SA_CTL_SetProperty_i32(

dHandle,0,SA_CTL_PKEY_SENSOR_POWER_MODE,SA_CTL_SENSOR_MODE_POWER_SAVE

);

See Also

4.5.28 Sensor Power Save Delay

212MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.5.28 Sensor Power Save Delay

Definition Value

C-Definition SA_CTL_PKEY_SENSOR_POWER_SAVE_DELAY

Code 0x03080054

ASCII-Command [:PROPerty]:CHANnel#:SENSor:DELay

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel RW NV X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Description

This property specifies the time in ms before the channel disables the sensor after a movement

has finished. It has no meaning if the Sensor Power Mode is not configured to power save mode.

In power save mode the sensor is disabled most of the time. Before a movement can be started

it must be enabled by the channel to keep track of the current position. Once the movement has

finished the sensor can be disabled again. The sensor power save delay configures an additional

delay before the sensor power is disabled. If a new movement is started while this delay is run-

ning, the sensor is still enabled and the movement can be started directly. Since it takes a few

milliseconds to enable the sensor, this setting may be used to optimize the timing of a movement

sequence.

Please refer to section 2.11 "Sensor Power Modes" for more information on the sensor power save

mode.

This property is stored to non-volatile memory and need not be configured on every power-up.

The default value is 100ms.

Valid Range

0 . . . 5000

Example

// set power save delay for the sensor of channel 0 to 200 ms

result = SA_CTL_SetProperty_i32(

dHandle,0,SA_CTL_PKEY_SENSOR_POWER_SAVE_DELAY,200

);

213MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

See Also

4.5.27 Sensor Power Mode

214MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.5.29 Position Mean Shift

Definition Value

C-Definition SA_CTL_PKEY_POSITION_MEAN_SHIFT

Code 0x03090022

ASCII-Command [:PROPerty]:CHANnel#:POSition:MSHift

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel RW NV X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property specifies the filter averaging factor for the position mean filter. The averaging factor

must be set as a left-shift value by a power of two. Thus the resulting averaging factor may be

calculated by the formula: factor = 2meanShif t.

This property is stored to non-volatile memory and need not be configured on every power-up.

The default value is 5 (32-fold position averaging).

Valid Range

0 . . . 7

Example

// set position mean filter to 0 (disabled) for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_POSITION_MEAN_SHIFT, 0

);

215MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.5.30 Safe Direction

Definition Value

C-Definition SA_CTL_PKEY_SAFE_DIRECTION

Code 0x03090027

ASCII-Command [:PROPerty]:CHANnel#:SDIRection

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel RW NV X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property specifies the safe direction used for calibration and referencing of positioner types

that are referenced via a mechanical end stop.

Some positioners are not equipped with a physical reference mark. For these positioners a me-

chanical end stop is used as a reference point when calling SA_CTL_Reference. Which end stop

is used is configured by the safe direction as well as the current Logical Scale Inversion. This should

be the direction in which the positioner may safely move without endangering the physical setup

of your manipulator system. Since the end stop must be calibrated before it can be properly used

as a reference point, the direction settings also affect the behavior of SA_CTL_Calibrate. Po-

sitioners that are referenced via an end stop also move to the configured end stop as part of the

calibration routine. This movement will use the configured Move Velocity and Move Acceleration.

Please note that the SA_CTL_Reference and SA_CTL_Calibrate functions will ignore their

configured start directions for positioners that are referenced via a mechanical end stop and will

implicitly use the direction configured by the safe direction and Logical Scale Inversion instead.

Please refer to theMCS2 Positioner Types document for a list of available positioner types and their

reference marks.

Note that when changing the safe direction the positioner must be calibrated again for proper

operation.

This property is stored to non-volatile memory and need not be configured on every power-up.

Valid Range

SA_CTL_FORWARD_DIRECTION (0x00), SA_CTL_BACKWARD_DIRECTION (0x01)

216MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Example

// set safe direction to forward for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_SAFE_DIRECTION, SA_CTL_FORWARD_DIRECTION

);

217MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.5.31 Control Loop Input Sensor Value

Definition Value

C-Definition SA_CTL_PKEY_CL_INPUT_SENSOR_VALUE

Code 0x0302001D

ASCII-Command [:PROPerty]:CHANnel#:CLINput:SENSor[:VALue]

Type Index Access Volatility Cmd-Group
Attributes

I64 Channel R - X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property always returns the ‘sensor‘ value regardless of the configured control-loop input.

Note that an error is returned if no sensor module or no sensor is present. Please refer to section

2.19.5 "Using Analog Inputs as Control-Loop Feedback" for more information.

Example

SA_CTL_Result_t result;

int64_t val;

result = SA_CTL_GetProperty_i64(

dHandle, 0, SA_CTL_PKEY_CL_INPUT_SENSOR_VALUE, &val, 0

);

if (result == SA_CTL_ERROR_NONE) {

// ‘val‘ holds the current sensor position of channel 0

}

See Also

4.5.32 Control Loop Input Aux Value

218MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.5.32 Control Loop Input Aux Value

Definition Value

C-Definition SA_CTL_PKEY_CL_INPUT_AUX_VALUE

Code 0x030200B2

ASCII-Command [:PROPerty]:CHANnel#:CLINput:AUXiliary[:VALue]

Type Index Access Volatility Cmd-Group
Attributes

I64 Channel R - X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property always returns the ‘auxiliary input‘ value regardless of the configured control-loop

input. Note that an error is returned if no sensor module or no I/O module is available (depending

on the configured Aux Input Select property). Please refer to section 2.19.5 "Using Analog Inputs

as Control-Loop Feedback" for more information on using auxiliary inputs.

Example

SA_CTL_Result_t result;

int64_t val;

result = SA_CTL_GetProperty_i64(

dHandle, 0, SA_CTL_PKEY_CL_INPUT_AUX_VALUE, &val, 0

);

if (result == SA_CTL_ERROR_NONE) {

// ‘val‘ holds the auxiliary input value of channel 0

}

See Also

4.5.31 Control Loop Input Sensor Value

219MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.5.33 Target To Zero Voltage Hold Threshold

Definition Value

C-Definition SA_CTL_PKEY_TARGET_TO_ZERO_VOLTAGE_HOLD_TH

Code 0x030200B9

ASCII-Command [:PROPerty]:CHANnel#:TTZVoltage:THReshold[:HOLD]

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel RW NV X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Description

This property specifies the hold threshold in pm or n° for the target-to-zero-voltage feature. The

threshold defines the maximum allowed remaining position error (distance to the target position)

for the sequence to terminate. As a guiding value the threshold should be in the range of about

ten times the target reached threshold of the configured positioner type but could be also much

lower in the particular case. If the threshold is too low the sequence will not terminate.

If a Hold Time is specified the sequence is repeated whenever the difference between current

position and target position exceeds the configured threshold. After the hold time elapsed the

last sequence is still finished and the channel is stopped.

Note that the target-to-zero-voltage feature must be enabled by setting the

SA_CTL_POS_CTRL_OPT_BIT_TARGET_TO_ZERO_VOLTAGE flag of the Positioner Control Op-

tions property. It has no meaning if the target-to-zero-voltage feature is disabled. If this property

is set to 0 the hold threshold value is derived from the Positioner Target Reached Threshold pa-

rameter of the configured positioner type.

This property is stored to non-volatile memory and need not be configured on every power-up.

The default value is 0.

Please refer to section 2.7.4 "Closed-LoopMovements" formore information on the target-to-zero-

voltage feature.

Valid Range

0 . . . 10× 106.

220MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Example

// set the target to zero voltage hold threshold to 25nm for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_TARGET_TO_ZERO_VOLTAGE_HOLD_TH, 25000

);

See Also

4.5.4 Positioner Control Options

221MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.6 Scale Properties

4.6.1 Logical Scale Offset

Definition Value

C-Definition SA_CTL_PKEY_LOGICAL_SCALE_OFFSET

Code 0x02040024

ASCII-Command [:PROPerty]:CHANnel#:LSCale:OFFset

Type Index Access Volatility Cmd-Group
Attributes

I64 Channel RW NV X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property specifies the logical scale offset. The value is given in pm for linear positioners

and in n° for rotary positioners. It is used to define the relation between the physical and the

logical scale. The logical scale offset can be set directly with this property but is also updated by

setting the Position property. Please refer to section 2.8.5 "Shifting the Measuring Scale" for more

information on defining positions.

This property is stored to non-volatile memory and need not be configured on every power-up.

The default value is 0.

Valid Range

−100× 1012 . . . 100× 1012

Example

// set the scale shift of channel 0 to +1mm relative

// to the physical scale

result = SA_CTL_SetProperty_i64(

dHandle, 0, SA_CTL_PKEY_LOGICAL_SCALE_OFFSET, 1e9

);

See Also

4.6.2 Logical Scale Inversion

222MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.6.2 Logical Scale Inversion

Definition Value

C-Definition SA_CTL_PKEY_LOGICAL_SCALE_INVERSION

Code 0x02040025

ASCII-Command [:PROPerty]:CHANnel#:LSCale:INVersion

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel RW NV X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property specifies the logical scale inversion. It is used to define the count direction of the

logical scale relative to the physical scale. Note that the scale inversion should be defined before

the absolute position is determined with the SA_CTL_Reference function.

Further note that only the logical scale will be inverted. The Safe Direction setting will not be

changed. Thus Positioners With Endstop Reference will move in the opposite direction when exe-

cuting SA_CTL_Calibrate or SA_CTL_Reference.

Please refer to section 2.8.5 "Shifting the Measuring Scale" for more information on defining posi-

tions.

Note that setting this property implicitly stops the channel and disables the control-loop.

This property is stored to non-volatile memory and need not be configured on every power-up.

The default value is SA_CTL_NON_INVERTED (0x00).

Magnetic Driver

Changing the scale inversion for Magnetic Driver channels also disables the amplifier the invali-

dates the phasing. See section 2.22 "Phasing of Magnetic Driven Positioners" for more informa-

tion.

WARNING
Magnetic driven positioners are not self-locking. Disabling the control-loop re-

moves any holding force from the positioner. Make sure not to damage any

equipment when the positioner changes its position unintentionally!

223MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Valid Range

SA_CTL_NON_INVERTED (0x00), SA_CTL_INVERTED (0x01)

Example

// enable the scale inversion for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_LOGICAL_SCALE_INVERSION, SA_CTL_INVERTED

);

See Also

4.6.1 Logical Scale Offset

224MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.6.3 Range Limit Min

Definition Value

C-Definition SA_CTL_PKEY_RANGE_LIMIT_MIN

Code 0x02040020

ASCII-Command [:PROPerty]:CHANnel#:RLIMit:MIN[:CURRent]

Type Index Access Volatility Cmd-Group
Attributes

I64 Channel RW V X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property specifies the software range limit minimum position. Note that the Range Limit Max

must be set to a higher value than the Range Limit Min to enable the limit check. This property is

not held in non-volatile memory but the default value at device startup is configurable (see Default

Range Limit Min).

Please refer to section 2.15 "Software Range Limit" for more information on software range limits.

The default value is 0.

Valid Range

−100× 1012 . . . 100× 1012

Example

// set the min range limit to -10mm for channel 0

result = SA_CTL_SetProperty_i64(

dHandle, 0, SA_CTL_PKEY_RANGE_LIMIT_MIN, -10000000000

);

See Also

4.6.4 Range Limit Max, 4.6.5 Default Range Limit Min, 4.6.6 Default Range Limit Max

225MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.6.4 Range Limit Max

Definition Value

C-Definition SA_CTL_PKEY_RANGE_LIMIT_MAX

Code 0x02040021

ASCII-Command [:PROPerty]:CHANnel#:RLIMit:MAX[:CURRent]

Type Index Access Volatility Cmd-Group
Attributes

I64 Channel RW V X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property specifies the software range limit maximum position. Note that the Range Limit Max

must be set to a higher value than the Range Limit Min to enable the limit check. This property is

not held in non-volatile memory but the default value at device startup is configurable (see Default

Range Limit Max).

Please refer to section 2.15 "Software Range Limit" for more information on software range limits.

The default value is 0.

Valid Range

−100× 1012 . . . 100× 1012

Example

// set the max range limit to +10mm for channel 0

result = SA_CTL_SetProperty_i64(

dHandle, 0, SA_CTL_PKEY_RANGE_LIMIT_MAX, 10000000000

);

See Also

4.6.3 Range Limit Min, 4.6.5 Default Range Limit Min, 4.6.6 Default Range Limit Max

226MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.6.5 Default Range Limit Min

Definition Value

C-Definition SA_CTL_PKEY_DEFAULT_RANGE_LIMIT_MIN

Code 0x020400C0

ASCII-Command [:PROPerty]:CHANnel#:RLIMit:MIN:DEFault

Type Index Access Volatility Cmd-Group
Attributes

I64 Channel RW NV X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property specifies the default value at device startup for the software range limit minimum

position.

Please refer to section 2.15 "Software Range Limit" for more information on software range limits.

The default value is 0.

Valid Range

−100× 1012 . . . 100× 1012

Example

// set the (persistent) startup min range limit to -10mm for channel 0

result = SA_CTL_SetProperty_i64(

dHandle, 0, SA_CTL_PKEY_DEFAULT_RANGE_LIMIT_MIN, -10000000000

);

See Also

4.6.6 Default Range Limit Max, 4.6.3 Range Limit Min, 4.6.4 Range Limit Max

227MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.6.6 Default Range Limit Max

Definition Value

C-Definition SA_CTL_PKEY_DEFAULT_RANGE_LIMIT_MAX

Code 0x020400C1

ASCII-Command [:PROPerty]:CHANnel#:RLIMit:MAX:DEFault

Type Index Access Volatility Cmd-Group
Attributes

I64 Channel RW NV X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property specifies the default value at device startup for the software range limit maximum

position.

Please refer to section 2.15 "Software Range Limit" for more information on software range limits.

The default value is 0.

Valid Range

−100× 1012 . . . 100× 1012

Example

// set the (persistent) startup max range limit to +10mm for channel 0

result = SA_CTL_SetProperty_i64(

dHandle, 0, SA_CTL_PKEY_DEFAULT_RANGE_LIMIT_MAX, 10000000000

);

See Also

4.6.6 Default Range Limit Max, 4.6.3 Range Limit Min, 4.6.4 Range Limit Max

228MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.7 Calibration Properties

4.7.1 Calibration Options

Definition Value

C-Definition SA_CTL_PKEY_CALIBRATION_OPTIONS

Code 0x0306005D

ASCII-Command [:PROPerty]:CHANnel#:CALibration:OPTions

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel RW V X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property specifies the calibration options. It is used to define the behavior of the calibration

routine when calling the SA_CTL_Calibrate function.

The value is a bit field containing independent flags. The following flags are available:

Bit C-Definition Code

0 SA_CTL_CALIB_OPT_BIT_DIRECTION 0x00000001

1 SA_CTL_CALIB_OPT_BIT_DIST_CODE_INV_DETECT 0x00000002

2 SA_CTL_CALIB_OPT_BIT_ASC_CALIBRATION* 0x00000004

8 SA_CTL_CALIB_OPT_BIT_LIMITED_TRAVEL_RANGE* 0x00000100

Undefined flags are reserved for future use. These flags should be set to zero.

Please refer to section 2.7.1 "Calibrating" for more information on the calibration sequence.

The default value is 0 (all flags cleared).

Example

SA_CTL_Result_t result;

int8_t channelIdx = 1;

// set calibration options of channel 1 (signal correction sequence)

result = SA_CTL_SetProperty_i32(

dHandle, channelIdx, SA_CTL_PKEY_CALIBRATION_OPTIONS, 0

);

*This option is only applicable for Stick-Slip Piezo Driver.

229MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

if (result == SA_CTL_ERROR_NONE) {

// start signal correction calibration sequence

result = SA_CTL_Calibrate(dHandle, channelIdx, 0);

}

See Also

4.7.2 Signal Correction Options

230MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.7.2 Signal Correction Options

Definition Value

C-Definition SA_CTL_PKEY_SIGNAL_CORRECTION_OPTIONS

Code 0x0306001C

ASCII-Command [:PROPerty]:CHANnel#:SCORrection:OPTions

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel RW NV X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property specifies the sensor signal correction options. The value is a bit field containing

independent flags with the following meaning:

Bit C-Definition Code

0 Reserved 0x00000001

1 SA_CTL_SIGNAL_CORR_OPT_BIT_DAC 0x00000002

2 Reserved 0x00000004

3 SA_CTL_SIGNAL_CORR_OPT_BIT_DPEC 0x00000008

4 SA_CTL_SIGNAL_CORR_OPT_BIT_ASC* 0x00000010

Undefined flags are reserved for future use. These flags should be set to zero. Bit 0 and bit 2 are

reserved and always read as one.

Dynamic Amplitude / Phase Error Correction (Bit 1 and Bit 3) Enables the dynamic sensor am-

plitude / phase error correction. The calibration routine corrects amplitude and phase errors

of the sensor signals. See section 2.7.1 "Calibrating" for more information. Additionally, the

controller automatically compensates the sensor signals while moving if these flags are set

to one. Disabling the dynamic amplitude and phase error correction might be useful for

some special applications to achieve a higher position repeatability with the trade-off off a

lower absolute position accuracy.

Advanced Sensor Correction*(Bit 4) The Advanced Sensor Correction allows to compensate pe-

riodic sensor errors. The correction requires an additional calibration routine which must

be performed once for every channel. This routine generates a compensation table for the

sensor data which is applied to the position calculation if this flag is set to one. See section

2.7.1 "Advanced Sensor Correction Calibration (calibration options 0x04 or 0x05)1" for the

details on the calibration routine.

231MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

This property is stored to non-volatile memory and need not be configured on every power-up.

The default value is 0x0f (15) withmeans that the amplitude and phase error corrections are active.

NOTICE
The advanced sensor correction needs a feature permission to be activated on

the controller. See section 2.23 "Feature Permissions" for more information.

Example

// disable the dynamic amplitude and phase error correction for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_SIGNAL_CORRECTION_OPTIONS, 0

);

See Also

4.7.1 Calibration Options

*This option is only applicable for Stick-Slip Piezo Driver.

232MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.8 Referencing Properties

4.8.1 Referencing Options

Definition Value

C-Definition SA_CTL_PKEY_REFERENCING_OPTIONS

Code 0x0307005D

ASCII-Command [:PROPerty]:CHANnel#:REFerencing:OPTions

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel RW V X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property specifies the find reference mode. It is used to define the behavior of the find

reference routine when calling the SA_CTL_Reference function.

Note that the find reference sequence is also influenced by the Move Velocity and Move Accelera-

tion properties (see there).

The value is a bit field containing independent flags. The following flags are available:

Bit C-Definition Code

0 SA_CTL_REF_OPT_BIT_START_DIR 0x00000001

1 SA_CTL_REF_OPT_BIT_REVERSE_DIR 0x00000002

2 SA_CTL_REF_OPT_BIT_AUTO_ZERO 0x00000004

3 SA_CTL_REF_OPT_BIT_ABORT_ON_ENDSTOP 0x00000008

4 SA_CTL_REF_OPT_BIT_CONTINUE_ON_REF_FOUND 0x00000010

5 SA_CTL_REF_OPT_BIT_STOP_ON_REF_FOUND 0x00000020

Undefined flags are reserved for future use. These flags should be set to zero.

Please refer to section 2.8.1 "Reference Marks" for more information on the find reference se-

quence.

The default value is 0 (all flags cleared).

233MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Example

SA_CTL_Result_t result;

int8_t channelIdx = 2;

// set find reference mode of channel 2 (start direction: backwards)

result = SA_CTL_SetProperty_i32(

dHandle,

channelIdx,

SA_CTL_PKEY_REFERENCING_OPTIONS,

SA_CTL_REF_OPT_BIT_START_DIR

);

if (result) {// handle error, abort}

// set velocity to 1mm/s

result = SA_CTL_SetProperty_i64(

dHandle,channelIdx,SA_CTL_PKEY_MOVE_VELOCITY,1e9

);

if (result) {// handle error, abort}

// disable acceleration control

result = SA_CTL_SetProperty_i64(

dHandle,channelIdx,SA_CTL_PKEY_MOVE_ACCELERATION,0

);

if (result == SA_CTL_ERROR_NONE) {

// start searching for the reference with the previously

// set parameters

result = SA_CTL_Reference(dHandle, channelIdx, 0);

}

See Also

4.5.18 Move Velocity, 4.5.19 Move Acceleration

234MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.8.2 Distance To Reference Mark

Definition Value

C-Definition SA_CTL_PKEY_DISTANCE_TO_REF_MARK

Code 0x030700A2

ASCII-Command [:PROPerty]:CHANnel#:REFerencing:DTRMark

Type Index Access Volatility Cmd-Group
Attributes

I64 Channel R - X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property holds the distance between the start of a referencing movement and the reference

mark. Note that the position of the reference mark is not necessarily the position where the po-

sitioner comes to halt. The behavior depends on the Referencing Options. See section 2.7.2 "Ref-

erencing" for more information. The value is updated whenever a referencing sequence finished.

The unit is pico meter (pm) for linear positioners and nano degree (n°) for rotatory positioners.

See Also

4.8.1 Referencing Options

235MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.8.3 Distance Code Inverted

Definition Value

C-Definition SA_CTL_PKEY_DIST_CODE_INVERTED

Code 0x0307000E

ASCII-Command [:PROPerty]:CHANnel#:REFerencing:DCINverted

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel RW NV X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property is used to correct the absolute position calculation when referencing positioners

with multiple reference marks. In rare cases the reference algorithm may produce faulty results

due to a reference coding mismatch. The correct setting is determined by an automatic calibra-

tion routine, thus it is usually not necessary to manually modify this property. See section 2.7.1

"Calibrating" for more information.

This property is stored to non-volatile memory and need not be configured on every power-up.

Valid Range

SA_CTL_NON_INVERTED (0x00), SA_CTL_INVERTED (0x01)

See Also

4.8.1 Referencing Options

236MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.9 Tuning and Customizing Properties

4.9.1 Positioner Movement Type

Definition Value

C-Definition SA_CTL_PKEY_POS_MOVEMENT_TYPE

Code 0x0309003F

ASCII-Command [:PROPerty]:CHANnel#:TUNing:MTYPe

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel R(W) (NV) X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property holds the positioner movement type. It may be used to determine the type of posi-

tioner (linear, rotatory, goniometer or tip-tilt) that is configured for the channel. This property has

informational character only.

Note that you must remove the write protection with the Positioner Write Protection property (see

there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type

configuration to a custom slot. See section 2.6.3 "Custom Positioner Types" for more information.

Valid Range

SA_CTL_POS_MOVEMENT_TYPE_LINEAR (0),

SA_CTL_POS_MOVEMENT_TYPE_ROTATORY (1),

SA_CTL_POS_MOVEMENT_TYPE_GONIOMETER (2),

SA_CTL_POS_MOVEMENT_TYPE_TIP_TILT (3)

Example

SA_CTL_Result_t result;

int32_t type;

result = SA_CTL_GetProperty_i32(

dHandle, 0, SA_CTL_PKEY_POS_MOVEMENT_TYPE, &type, 0

);

if (result == SA_CTL_ERROR_NONE) {

if (type == SA_CTL_POS_MOVEMENT_TYPE_GONIOMETER) {

237MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

// goniometer type configured

}

}

See Also

4.9.3 Positioner Base Unit, 4.9.4 Positioner Base Resolution

238MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.9.2 Positioner Is Custom Type

Definition Value

C-Definition SA_CTL_PKEY_POS_IS_CUSTOM_TYPE

Code 0x03090041

ASCII-Command [:PROPerty]:CHANnel#:TUNing:CUSTom

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel R - X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property may be used to determine if the currently configured positioner type is a custom

type. Custom positioner types are fully configurable. See section 2.6.3 "Custom Positioner Types"

for more information.

Example

SA_CTL_Result_t result;

int32_t custom;

result = SA_CTL_GetProperty_i32(

dHandle, 0, SA_CTL_PKEY_POS_IS_CUSTOM_TYPE, &custom, 0

);

if (result == SA_CTL_ERROR_NONE) {

if (custom) // custom positioner type configured

else // predefined positioner type configured

}

See Also

4.5.8 Positioner Type

239MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.9.3 Positioner Base Unit

Definition Value

C-Definition SA_CTL_PKEY_POS_BASE_UNIT

Code 0x03090042

ASCII-Command [:PROPerty]:CHANnel#:TUNing:BASE:UNIT

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel R(W) (NV) X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property holds the basic unit of the position values a channel uses. (e.g. meter, degree). Note

that this property has informational character only. Setting it to a different value won’t influence

the position calculation.

The hand control module reads this setting to display the appropriate unit on the screen.

Note that you must remove the write protection with the Positioner Write Protection property (see

there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type

configuration to a custom slot. See section 2.6.3 "Custom Positioner Types" for more information.

Valid Range

SA_CTL_UNIT_NONE (0x00000000),

SA_CTL_UNIT_METER (0x00000002),

SA_CTL_UNIT_DEGREE (0x00000003)

Example

SA_CTL_Result_t result;

int32_t unit;

result = SA_CTL_GetProperty_i32(

dHandle, 0, SA_CTL_PKEY_POS_BASE_UNIT, &unit, 0

);

if (result == SA_CTL_ERROR_NONE) {

if (unit == SA_CTL_UNIT_METER) // linear positioner type configured

else // rotatory/goniometer positioner type configured

}

240MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

See Also

4.9.4 Positioner Base Resolution

241MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.9.4 Positioner Base Resolution

Definition Value

C-Definition SA_CTL_PKEY_POS_BASE_RESOLUTION

Code 0x03090043

ASCII-Command [:PROPerty]:CHANnel#:TUNing:BASE:RESolution

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel R(W) (NV) X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property holds the basic resolution of the position value in powers of 10. It may be used to

programmatically determine the interpretation of the position value of a channel. The resolution

depends on the configured positioner type. (see Positioner Type) For example, a channel config-

ured as linear positioner type has a base unit of Meter and a base resolution of −12. So a position

value of 100000000 would correspond to 100µm. Note that this property has informational char-

acter only. Setting it to a different value won’t influence the position calculation. The resolution

must be an integer multiple of 3.

The hand control module reads this setting to display the appropriate unit on the screen.

Note that you must remove the write protection with the Positioner Write Protection property (see

there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type

configuration to a custom slot. See section 2.6.3 "Custom Positioner Types" for more information.

Valid Range

−12, −9, −6, −3, 0.

Example

SA_CTL_Result_t result;

int32_t resolution;

result = SA_CTL_GetProperty_i32(

dHandle, 0, SA_CTL_PKEY_POS_BASE_RESOLUTION, &resolution, 0

);

if (result == SA_CTL_ERROR_NONE) {

// ’resolution’ holds the base resolution of channel 0

242MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

}

See Also

4.9.3 Positioner Base Unit

243MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.9.5 Positioner Sensor Head Type

Definition Value

C-Definition SA_CTL_PKEY_POS_HEAD_TYPE

Code 0x0309008E

ASCII-Command [:PROPerty]:CHANnel#:TUNing:HTYPe

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel R(W) (NV) X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property specifies the sensor head type. This property is only relevant if a SmarAct PicoScale

interferometer is used as sensor module. The head type is set to the PicoScale when an adjust-

ment sequence is started with the MCS2 hand control module.

For more information on head types refer to the PicoScale User Manual.

Note that you must remove the write protection with the Positioner Write Protection property (see

there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type

configuration to a custom slot. See section 2.6.3 "Custom Positioner Types" for more information.

Valid Range

C01, C02, C03, F01

See Also

4.9.17 Positioner Write Protection, 4.9.16 Save Positioner Type

244MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.9.6 Positioner Reference Type

Definition Value

C-Definition SA_CTL_PKEY_POS_REF_TYPE

Code 0x03090048

ASCII-Command [:PROPerty]:CHANnel#:TUNing:RTYPe

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel R(W) (NV) X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property specifies the reference type of the positioner. The reference type is used by the

SA_CTL_Reference function to determine the physical position. See section 2.8.1 "Reference

Marks" for more information.

Note that you must remove the write protection with the Positioner Write Protection property (see

there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type

configuration to a custom slot. See section 2.6.3 "Custom Positioner Types" for more information.

Valid Range

SA_CTL_REF_TYPE_NONE (0),

SA_CTL_REF_TYPE_END_STOP (1),

SA_CTL_REF_TYPE_SINGLE_CODED (2),

SA_CTL_REF_TYPE_DISTANCE_CODED (3)

Example

SA_CTL_Result_t result;

int32_t type;

result = SA_CTL_GetProperty_i32(

dHandle, 0, SA_CTL_PKEY_POS_REF_TYPE, &type, 0

);

if (result == SA_CTL_ERROR_NONE) {

if (type == SA_CTL_REF_TYPE_SINGLE_CODED) {

// single coded reference type configured

}

245MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

}

See Also

4.9.17 Positioner Write Protection, 4.9.16 Save Positioner Type

246MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.9.7 Positioner P Gain

Definition Value

C-Definition SA_CTL_PKEY_POS_P_GAIN

Code 0x0309004B

ASCII-Command [:PROPerty]:CHANnel#:TUNing:GAIN:P

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel R(W) (NV) X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property specifies the proportional gain of the control-loop. Note that the resulting gain is

also influenced by the Positioner PID Shift property.

Note that you must remove the write protection with the Positioner Write Protection property (see

there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type

configuration to a custom slot. See section 2.6.3 "Custom Positioner Types" for more information.

Valid Range

0 . . . 2× 109.

Example

// set the P gain to 100 for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_POS_P_GAIN, 100

);

See Also

4.9.8 Positioner I Gain, 4.9.9 Positioner D Gain, 4.9.10 Positioner PID Shift

247MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.9.8 Positioner I Gain

Definition Value

C-Definition SA_CTL_PKEY_POS_I_GAIN

Code 0x0309004C

ASCII-Command [:PROPerty]:CHANnel#:TUNing:GAIN:I

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel R(W) (NV) X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property specifies the integral gain of the control-loop. The Positioner Anti Windup must be

set to a non-zero value to activate the I gain of the control-loop. Note that the resulting gain is also

influenced by the Positioner PID Shift property.

Note that you must remove the write protection with the Positioner Write Protection property (see

there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type

configuration to a custom slot. See section 2.6.3 "Custom Positioner Types" for more information.

Valid Range

0 . . . 2× 109.

Example

// set the I gain to 0 for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_POS_I_GAIN, 0

);

See Also

4.9.7 Positioner P Gain, 4.9.9 Positioner D Gain, 4.9.10 Positioner PID Shift, 4.9.11 Positioner Anti

Windup

248MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.9.9 Positioner D Gain

Definition Value

C-Definition SA_CTL_PKEY_POS_D_GAIN

Code 0x0309004D

ASCII-Command [:PROPerty]:CHANnel#:TUNing:GAIN:D

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel R(W) (NV) X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property specifies the differential gain of the control-loop. Note that the resulting gain is also

influenced by the Positioner PID Shift property.

Note that you must remove the write protection with the Positioner Write Protection property (see

there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type

configuration to a custom slot. See section 2.6.3 "Custom Positioner Types" for more information.

Valid Range

0 . . . 2× 109.

Example

// set the D gain to 10 for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_POS_P_GAIN, 10

);

See Also

4.9.7 Positioner P Gain, 4.9.8 Positioner I Gain, 4.9.10 Positioner PID Shift

249MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.9.10 Positioner PID Shift

Definition Value

C-Definition SA_CTL_PKEY_POS_PID_SHIFT

Code 0x0309004E

ASCII-Command [:PROPerty]:CHANnel#:TUNing:GAIN:SHIFt

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel R(W) (NV) X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property specifies a divisor for the PID controller output. The resulting divisor is calculated

as 2PIDshift. Since the divisor is applied at the output of the PID controller it influences the P, I and

D-term results.

PID gains are set as integer values. The result of the respective control term is divided by internally

right-shifting it by the configured PID shift value. This way effective gains lower than one may be

defined using only integer numbers. The effective gain is determined by the combination of the

gain value and the PID shift.

gaineff = gain / 2
PIDshift

E.g. an effective gain of 0.25 may be achieved by the settings:

gain = 8, shift = 5 or gain = 1, shift = 2, both settings result in the same effective gain.

gaineff = 8 / 2
5 = 1 / 22 = 0.25

Note that you must remove the write protection with the Positioner Write Protection property (see

there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type

configuration to a custom slot. See section 2.6.3 "Custom Positioner Types" for more information.

The default value is 10.

Valid Range (Stick-Slip Piezo Driver)

0 . . . 16.

Valid Range (Magnetic Driver)

0 . . . 32.

250MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Example

// set the PID shift to 10 (default) for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_POS_PID_SHIFT, 10

);

See Also

4.9.7 Positioner P Gain, 4.9.8 Positioner I Gain, 4.9.9 Positioner D Gain

251MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.9.11 Positioner Anti Windup

Definition Value

C-Definition SA_CTL_PKEY_POS_ANTI_WINDUP

Code 0x0309004F

ASCII-Command [:PROPerty]:CHANnel#:TUNing:AWINdup

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel R(W) (NV) X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Description

This property specifies the anti windup limit for the integral gain of the control-loop. It has no

meaning if the Positioner I Gain property is set to zero. The value range refers to the range of the

PID-controller’s output which depends on the type of driver module.

Note that you must remove the write protection with the Positioner Write Protection property (see

there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type

configuration to a custom slot. See section 2.6.3 "Custom Positioner Types" for more information.

The default value is 0.

Stick-Slip Piezo Driver

In general the integral gain must not be used for stick-slip piezo positioners since the plant model

already has integrating behavior. The maximum output value of Stick-Slip Piezo Drivers is 2× 106

mHz so that the maximum windup limit would also be this value.

Magnetic Driver

The windup limit is set internally so that this property has no effect for this type of driver channels.

Valid Range

0 . . . 2× 109.

252MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Example

// set the anti windup to default for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_POS_ANTI_WINDUP, 0

);

See Also

4.9.7 Positioner P Gain, 4.9.8 Positioner I Gain, 4.9.9 Positioner D Gain, 4.9.10 Positioner PID Shift

253MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.9.12 Positioner ESD Distance Threshold

Definition Value

C-Definition SA_CTL_PKEY_POS_ESD_DIST_TH

Code 0x03090050

ASCII-Command [:PROPerty]:CHANnel#:TUNing:ESDetection:DISTance

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel R(W) (NV) X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property specifies the end stop detection distance threshold in pm or n°. This property in

conjunction with the Positioner ESD Counter Threshold configure the end stop detection respon-

sible to detect a physical end stop as well as a mechanical blockage of a positioner for closed-loop

movements. An end stop condition leads to a stop of the channel.

Note that you must remove the write protection with the Positioner Write Protection property (see

there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type

configuration to a custom slot. See section 2.6.3 "Custom Positioner Types" for more information.

Generally, there is no need to modify the end stop detection configuration. The configured Posi-

tioner Type defines appropriate values for all kinds of SmarAct positioners. Nonetheless it may

be necessary to disable the end stop detection in some special cases. E.g. if an auxiliary input is

used as feedback for the control-loop and the actual input value represents a set-point for the

control-loop instead of a current position of the positioner.

The default value depends on the configured positioner type. The special value 0 disables the end

stop detection.

CAUTION
Configuring inappropriate values or disabling the end stop detection prevents

the channel from stopping the positioner in case of a mechanical blockage. The

end stop detection configuration properties must be used with caution!

Valid Range

0 . . . 1× 109.

254MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Example

// set the end stop detection distance threshold to 1000000 for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_POS_ESD_DIST_TH, 1000000

);

See Also

4.9.13 Positioner ESD Counter Threshold

255MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.9.13 Positioner ESD Counter Threshold

Definition Value

C-Definition SA_CTL_PKEY_POS_ESD_COUNTER_TH

Code 0x03090051

ASCII-Command [:PROPerty]:CHANnel#:TUNing:ESDetection:COUNter

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel R(W) (NV) X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property specifies the end stop detection counter threshold.

Note that you must remove the write protection with the Positioner Write Protection property (see

there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type

configuration to a custom slot. See section 2.6.3 "Custom Positioner Types" for more information.

Valid Range

1 . . . 2× 109.

Example

// set the end stop detection counter value to 100000 for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_POS_ESD_COUNTER_TH, 100000

);

See Also

4.9.12 Positioner ESD Distance Threshold

256MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.9.14 Positioner Target Reached Threshold

Definition Value

C-Definition SA_CTL_PKEY_POS_TARGET_REACHED_TH

Code 0x03090052

ASCII-Command [:PROPerty]:CHANnel#:TUNing:THReshold:TREached

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel R(W) (NV) X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property specifies the target reached threshold in pm or n°. A closed-loop movement is

considered to be finished once the target position ± the target reached threshold is reached.

Note that you must remove the write protection with the Positioner Write Protection property (see

there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type

configuration to a custom slot. See section 2.6.3 "Custom Positioner Types" for more information.

Valid Range

0 . . . 1× 106.

Example

// set the target reached threshold to 5nm for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_POS_TARGET_REACHED_TH, 5000

);

See Also

4.9.15 Positioner Target Hold Threshold

257MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.9.15 Positioner Target Hold Threshold

Definition Value

C-Definition SA_CTL_PKEY_POS_TARGET_HOLD_TH

Code 0x03090053

ASCII-Command [:PROPerty]:CHANnel#:TUNing:THReshold:THOLd

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel R(W) (NV) X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property specifies the target hold threshold in pm or n°. The hold threshold defines a dead

zone around the control-loop input signal where the output does not change (target± target hold

threshold). This parameter is typically used in a system where the resolution of the sensor is

significantly lower than the resolution of the actuator. The dead zone then prevents oscillation

around the target or "hunting" of the control-loop.

If an auxiliary analog input is used as control-loop feedback this property defines the dead zone

for the analog input signal. Since the digital representation of the analog input value is defined

by the ADC of the IO-module (see I/O Module Analog Input Range property) the dead zone must

be configured in counts of ADC bits in this case. Refer to section 2.19.5 "Using Analog Inputs as

Control-Loop Feedback" for more information on the configuration.

Note that you must remove the write protection with the Positioner Write Protection property (see

there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type

configuration to a custom slot. See section 2.6.3 "Custom Positioner Types" for more information.

The default value is 0.

Valid Range

0 . . . 1× 106.

Example

// set the target hold threshold to 100nm for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_POS_TARGET_HOLD_TH, 100000

258MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

);

See Also

4.9.14 Positioner Target Reached Threshold

259MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.9.16 Save Positioner Type

Definition Value

C-Definition SA_CTL_PKEY_POS_SAVE

Code 0x0309000A

ASCII-Command [:PROPerty]:CHANnel#:TUNing:SAVE

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel W - X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property is used to save a modified positioner type to a custom slot of a channel. Currently

four custom slots per channel are available. Saving the positioner type makes the parameters

persistent and implicitly sets the Positioner Type to the given custom type.

Valid Range

SA_CTL_POSITIONER_TYPE_CUSTOM0 (250), SA_CTL_POSITIONER_TYPE_CUSTOM1 (251),

SA_CTL_POSITIONER_TYPE_CUSTOM2 (252), SA_CTL_POSITIONER_TYPE_CUSTOM3 (253)

Example

// save a modified positioner type of channel 0 to custom slot 1

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_POS_SAVE, SA_CTL_POSITIONER_TYPE_CUSTOM0

);

See Also

4.9.17 Positioner Write Protection

260MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.9.17 Positioner Write Protection

Definition Value

C-Definition SA_CTL_PKEY_POS_WRITE_PROTECTION

Code 0x0309000D

ASCII-Command [:PROPerty]:CHANnel#:TUNing:WPRotection

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel RW V X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property is used to unlock the write access to the tuning parameters. A special key must be

written to this property to unlock the write access to the tuning properties. Write any other value

to this property to enable the protection again. Otherwise the write protection remains unlocked

for the channel until the device is restarted. The write protection key is:

SA_CTL_POS_WRITE_PROTECTION_KEY (0x534D4152)

Example

// disable tuning parameter write protection of channel 0

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_POS_WRITE_PROTECTION,

SA_CTL_POS_WRITE_PROTECTION_KEY

);

// set tuning parameters like P gain, etc.

See Also

4.9.16 Save Positioner Type

261MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.10 Streaming Properties

4.10.1 Stream Base Rate

Definition Value

C-Definition SA_CTL_PKEY_STREAM_BASE_RATE

Code 0x040F002C

ASCII-Command [:PROPerty]:DEVice:STReaming:BASerate

Type Index Access Volatility Cmd-Group
Attributes

I32 Device RW V -

Applicable for

USB Interface SA_CTL_INTERFACE_USB (0x0001)

Ethernet Interface SA_CTL_INTERFACE_ETHERNET (0x0002)

Description

This property specifies the stream base rate in Hz for the trajectory streaming. See section 2.18

"Trajectory Streaming" for more information.

The default stream base rate is 1000Hz.

Valid Range

10 . . . 1000Hz

Example

// set the stream rate to 1 kHz

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_STREAM_BASE_RATE, 1000

);

See Also

4.10.2 Stream External Sync Rate, 4.14.1 Device Input Trigger Mode

262MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.10.2 Stream External Sync Rate

Definition Value

C-Definition SA_CTL_PKEY_STREAM_EXT_SYNC_RATE

Code 0x040F002D

ASCII-Command [:PROPerty]:DEVice:STReaming:SYNCrate

Type Index Access Volatility Cmd-Group
Attributes

I32 Device RW V -

Applicable for

USB Interface SA_CTL_INTERFACE_USB (0x0001)

Ethernet Interface SA_CTL_INTERFACE_ETHERNET (0x0002)

Description

This property specifies the external stream synchronization rate in Hz for the trajectory streaming.

It may be used to synchronize the internal position streaming clock to an external clock signal.

Note that the configured Stream Base Rate must be a whole-number multiple of the external sync

rate.

The default value is 1.

Valid Range

1 . . . 1000Hz

NOTICE
In order to use the external stream synchronization the devicemust be equipped

with an Input Trigger connector.

Example

// configure external stream synchronization rate to 100Hz

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_STREAM_EXT_SYNC_RATE, 100

);

263MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

See Also

4.10.1 Stream Base Rate, 4.14.1 Device Input Trigger Mode

264MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.10.3 Stream Options

Definition Value

C-Definition SA_CTL_PKEY_STREAM_OPTIONS

Code 0x040F005D

ASCII-Command [:PROPerty]:DEVice:STReaming:OPTions

Type Index Access Volatility Cmd-Group
Attributes

I32 Device RW V -

Applicable for

USB Interface SA_CTL_INTERFACE_USB (0x0001)

Ethernet Interface SA_CTL_INTERFACE_ETHERNET (0x0002)

Description

This property specifies the stream’s options. It is used to define the behavior of the stream before

calling the SA_CTL_OpenStream function.

The value is a bit field containing independent flags. The following flags are available:

Bit C-Definition Code

0 SA_CTL_STREAM_OPT_BIT_INTERPOLATION_DIS 0x00000001

Undefined flags are reserved for future use. These flags should be set to zero.

The default value is 0 (all flags cleared).

Please refer to section 2.18.3 "Options" for more information.

Example

// disable the target position interpolation for the trajectory streaming

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_STREAM_OPTIONS,

SA_CTL_STREAM_OPT_BIT_INTERPOLATION_DIS

);

See Also

4.10.1 Stream Base Rate

265MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.10.4 Stream Load Maximum

Definition Value

C-Definition SA_CTL_PKEY_STREAM_LOAD_MAX

Code 0x040F0301

ASCII-Command [:PROPerty]:DEVice:STReaming:LOAD:MAXimum

Type Index Access Volatility Cmd-Group
Attributes

I32 Device R - -

Applicable for

USB Interface SA_CTL_INTERFACE_USB (0x0001)

Ethernet Interface SA_CTL_INTERFACE_ETHERNET (0x0002)

Description

This property reports themaximum load generated by the current stream in percent. The property

acts like a peak detector. The highest load level generated by the currently running stream is

stored. When starting the stream the load value is reset to zero. Please refer to section 2.18

"Trajectory Streaming" for more information.

Valid Range

0 . . . 100%

Example

SA_CTL_Result_t result;

int32_t maximumLoad;

result = SA_CTL_GetProperty_i32(

dHandle, 0, SA_CTL_PKEY_STREAM_LOAD_MAX, &maximumLoad, 0

);

if (result == SA_CTL_ERROR_NONE) {

// ’maximumLoad’ holds the maximum load of channel 0 in percent

}

See Also

4.10.1 Stream Base Rate

266MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.11 Diagnostic Properties

4.11.1 Channel Error

Definition Value

C-Definition SA_CTL_PKEY_CHANNEL_ERROR

Code 0x0502007A

ASCII-Command [:PROPerty]:CHANnel#:ERRor

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel R - X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property holds the last movement error of a channel. Generally, event notifications are used

to inform about channel errors. (See section 2.7.7 "Movement Feedback" for more information.)

However, if event notifications are not used in an application the Channel State bit

SA_CTL_CH_STATE_BIT_MOVEMENT_FAILED can be monitored to detect channel errors. This

property may be read then to determine the reason of the error.

Note that this property only holds errors caused by an asynchronous movement command (such

as SA_CTL_Move, SA_CTL_Calibrate and SA_CTL_Reference). An error occurredwhile read-

ing or writing a property is not captured. More precisely, the property returns the result param-

eter of the last SA_CTL_EVENT_MOVEMENT_FINISHED or SA_CTL_EVENT_HOLDING_ABORTED

event.

Note that the channel error is reset to SA_CTL_ERROR_NONE after reading this property.

Example

SA_CTL_Result_t result;

int32_t chError;

result = SA_CTL_GetProperty_i32(

dHandle, 0, SA_CTL_PKEY_CHANNEL_ERROR, &chError, 0

);

if (result == SA_CTL_ERROR_NONE) {

// ’chError’ holds the last error code of channel 0

}

267MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

See Also

4.5.12 Channel State, 5.2.2 Movement Finished, 5.2.3 Holding Aborted

268MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.11.2 Channel Temperature

Definition Value

C-Definition SA_CTL_PKEY_CHANNEL_TEMPERATURE

Code 0x05020034

ASCII-Command [:PROPerty]:CHANnel#:TEMPerature

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel R - X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property holds the amplifier temperature in ◦C. The temperature is measured near the chan-

nels driver amplifier. See section 2.9.3 "Hardware Monitoring" for more information on tempera-

ture monitoring.

Example

SA_CTL_Result_t result;

int32_t chTemp;

result = SA_CTL_GetProperty_i32(

dHandle, 0, SA_CTL_PKEY_CHANNEL_TEMPERATURE, &chTemp, 0

);

if (result == SA_CTL_ERROR_NONE) {

// ’chTemp’ holds the temperature of the amplifier of channel 0

}

See Also

4.11.3 Bus Module Temperature

269MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.11.3 Bus Module Temperature

Definition Value

C-Definition SA_CTL_PKEY_BUS_MODULE_TEMPERATURE

Code 0x05030034

ASCII-Command [:PROPerty]:MODule#:TEMPerature

Type Index Access Volatility Cmd-Group
Attributes

I32 Module R - X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property holds the temperature of a bus module in ◦C. See section 2.9.3 "Hardware Monitor-

ing" for more information on temperature monitoring.

Example

SA_CTL_Result_t result;

int32_t modTemp;

result = SA_CTL_GetProperty_i32(

dHandle, 0, SA_CTL_PKEY_BUS_MODULE_TEMPERATURE, &modTemp, 0

);

if (result == SA_CTL_ERROR_NONE) {

// ’modTemp’ holds the temperature of the driver module 0

}

See Also

4.11.2 Channel Temperature

270MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.11.4 Positioner Fault Reason

Definition Value

C-Definition SA_CTL_PKEY_POSITIONER_FAULT_REASON

Code 0x05020113

ASCII-Command [:PROPerty]:CHANnel#:PFReason

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel R - X

Applicable for

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property holds a bit field of positioner faults. A positioner fault is indicated by the

SA_CTL_CH_STATE_BIT_POSITIONER_FAULT bit of the Channel State property. This property

may then be read to determine the exact fault situation. The reason of a positioner fault may

be a bad wiring of the connector or a defective cable. The fault bits give a hint which wire is

affected by a short or interruption. The current deviation flag indicates that the controller detected

an unbalance of the phase currents which also may be an indicator for a positioner damage. The

driver fault flag will be set in case of a fault or damage of the driver amplifier of the controller.

In any case the positioner must be disconnected from the controller and checked for damages.

The value is a bit field containing independent flags with the following meaning:

Bit C-Definition Code

0 SA_CTL_POS_FAULT_REASON_BIT_U_PHASE_SHORT 0x00000001

1 SA_CTL_POS_FAULT_REASON_BIT_V_PHASE_SHORT 0x00000002

2 SA_CTL_POS_FAULT_REASON_BIT_W_PHASE_SHORT 0x00000004

3 SA_CTL_POS_FAULT_REASON_BIT_U_PHASE_OPEN 0x00000008

4 SA_CTL_POS_FAULT_REASON_BIT_V_PHASE_OPEN 0x00000010

5 SA_CTL_POS_FAULT_REASON_BIT_W_PHASE_OPEN 0x00000020

6 SA_CTL_POS_FAULT_REASON_BIT_CURRENT_DEVIATION 0x00000040

15 SA_CTL_POS_FAULT_REASON_BIT_DRIVER_FAULT 0x00008000

Example

SA_CTL_Result_t result;

int32_t fault;

result = SA_CTL_GetProperty_i32(

dHandle, 0, SA_CTL_PKEY_POSITIONER_FAULT_REASON, &fault, 0

271MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

);

if (result == SA_CTL_ERROR_NONE) {

// ’fault’ holds the positioner fault reason of channel 0

}

See Also

4.5.2 Amplifier Enabled

272MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.11.5 Motor Load

Definition Value

C-Definition SA_CTL_PKEY_MOTOR_LOAD

Code 0x05020115

ASCII-Command [:PROPerty]:CHANnel#:MOTor:LOAD

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel R - X

Applicable for

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property reports the motor load in percent. The motor load is calculated by the I2T protec-

tion algorithm from the motor current over time. See section 2.9.2 "Magnetic Driver Overload

Protection" for more information.

Note that only the amount of current which exceeds the continuous current value leads to an

increasing load level. This means, that if the positioner is operated only with its nominal load the

motor load remains at 0%. Monitoring this property while performing movements may be useful

to estimate the motor load before the overload protection trips and disables the control-loop to

protect the positioner from over-heating.

Valid Range

0 . . . 100%

Example

SA_CTL_Result_t result;

int32_t motorLoad;

result = SA_CTL_GetProperty_i32(

dHandle, 0, SA_CTL_PKEY_MOTOR_LOAD, &motorLoad, 0

);

if (result == SA_CTL_ERROR_NONE) {

// ’motorLoad’ holds the load of channel 0 in percent

}

See Also

4.11.4 Positioner Fault Reason

273MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.12 Auxiliary Properties

4.12.1 Aux Positioner Type

Definition Value

C-Definition SA_CTL_PKEY_AUX_POSITIONER_TYPE

Code 0x0802003C

ASCII-Command [:PROPerty]:CHANnel#:AUXiliary:PTYPe

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel RW NV X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property is used to tell the channel which set of control-loop parameters (PID gains, etc.) is

used when an auxiliary input is configured as input for the control-loop. More precisely, if the

Control Loop Input property is set to SA_CTL_CONTROL_LOOP_INPUT_AUX_IN the auxiliary po-

sitioner type parameters are implicitly configured, otherwise the regular positioner type param-

eters are used. This way it is possible to switch between two control modes without manually

changing all individual parameters. Typically a custom positioner type slot will be used here to

define the necessary parameters.

Please refer to section 2.19.5 "Using Analog Inputs as Control-Loop Feedback" for more informa-

tion on using auxiliary inputs.

This property is stored to non-volatile memory and need not be configured on every power-up.

Valid Range

SA_CTL_POSITIONER_TYPE_CUSTOM0 (250),

SA_CTL_POSITIONER_TYPE_CUSTOM1 (251),

SA_CTL_POSITIONER_TYPE_CUSTOM2 (252),

SA_CTL_POSITIONER_TYPE_CUSTOM3 (253)

Example

// select the ‘CUSTOM0‘ positioner type (type code 250) for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_AUX_POSITIONER_TYPE, 250

274MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

);

See Also

4.5.8 Positioner Type

275MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.12.2 Aux Positioner Type Name

Definition Value

C-Definition SA_CTL_PKEY_AUX_POSITIONER_TYPE_NAME

Code 0x0802003D

ASCII-Command [:PROPerty]:CHANnel#:AUXiliary:PTName

Type Index Access Volatility Cmd-Group
Attributes

String Channel R - -

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property holds a descriptive name of the configured auxiliary positioner type. The positioner

type name is a null terminated string. Note that the name is read-only.

Example

SA_CTL_Result_t result;

char name[SA_CTL_STRING_MAX_LENGTH];

size_t ioStringSize = sizeof(name);

result = SA_CTL_GetProperty_s(

dHandle, 0, SA_CTL_PKEY_AUX_POSITIONER_TYPE_NAME, name, &ioStringSize

);

if (result == SA_CTL_ERROR_NONE) {

// ’name’ holds the name of the configured auxiliary positioner type

}

See Also

4.12.1 Aux Positioner Type, 4.5.8 Positioner Type

276MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.12.3 Aux Input Select

Definition Value

C-Definition SA_CTL_PKEY_AUX_INPUT_SELECT

Code 0x08020018

ASCII-Command [:PROPerty]:CHANnel#:AUXiliary:ISELect

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel RW NV X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property selects the auxiliary input component. Note that the Aux I/O Module Input Index

property must be configured too to select a specific analog input.

Note that the additional sensormodule inputs are not available on all sensormodule types. Please

refer to section 2.19 "Auxiliary Inputs and Outputs" for more information on using auxiliary inputs.

This property is stored to non-volatile memory and need not be configured on every power-up.

The default value is SA_CTL_AUX_INPUT_SELECT_IO_MODULE (0).

Valid Range

SA_CTL_AUX_INPUT_SELECT_IO_MODULE (0),

SA_CTL_AUX_INPUT_SELECT_SENSOR_MODULE (1)

Example

// set the auxiliary input selection to ‘I/O module‘ for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_AUX_INPUT_SELECT,

SA_CTL_AUX_INPUT_SELECT_IO_MODULE

);

See Also

4.12.4 Aux I/O Module Input Index, 4.12.5 Aux Direction Inversion, 4.5.32 Control Loop Input Aux

Value, 4.5.6 Control Loop Input

277MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.12.4 Aux I/O Module Input Index

Definition Value

C-Definition SA_CTL_PKEY_AUX_IO_MODULE_INPUT_INDEX

Code 0x081100AA

ASCII-Command [:PROPerty]:CHANnel#:AUXiliary:IOModule:INPut:INDex

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel RW NV X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property specifies which input of an analog I/O module is used as input for the auxiliary

control-loop input.

The I/O module has a total number of six analog inputs which are mapped in groups of two to the

channels of the corresponding driver module. The input index refers to the analog inputs assigned

to a specific channel as follows:

Input Index Channel Index Analog Input

0 0 (3) (6) AIN-1

0 1 (4) (7) AIN-2

0 2 (5) (8) AIN-3

1 0 (3) (6) AIN-4

1 1 (4) (7) AIN-5

1 2 (5) (8) AIN-6

Note that input indexes refer to a module (start with zero for each module) while the channel

indexes refer to the entire device. Channel indexes in brackets refer to a second respectively third

module of the device.

Please refer to section 2.19 "Auxiliary Inputs and Outputs" for more information on using auxiliary

inputs. See the MCS2 User Manual for the pin assignment of the I/O module connector.

This property is stored to non-volatile memory and need not be configured on every power-up.

The default input index is 0.

Valid Range

0 . . . 1

278MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Example

// set the auxiliary I/O module input index to 0 for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_AUX_IO_MODULE_INPUT_INDEX, 0

);

See Also

4.12.3 Aux Input Select, 4.12.5 Aux Direction Inversion, 4.12.6 Aux I/OModule Input0 / Input1 Value

279MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.12.5 Aux Direction Inversion

Definition Value

C-Definition SA_CTL_PKEY_AUX_DIRECTION_INVERSION

Code 0x0809000E

ASCII-Command [:PROPerty]:CHANnel#:AUXiliary:DINVersion

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel RW NV X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property specifies the feedback direction sense for the control-loop in case an auxiliary input

is used as input for the control-loop. The direction sense of the feedback must match the direction

sense of the control-loop output. Otherwise a runaway condition may occur when commanding a

closed-loop movement. The end stop detection (if not disabled) will typically abort the movement

in that case. While the direction sense is determined automatically by the calibration routine when

using the position as feedback signal, this setting must be defined manually using this property

when using an auxiliary input. This property has no meaning if the Control Loop Input is not

configured to auxiliary input.

Please refer to section 2.19.5 "Using Analog Inputs as Control-Loop Feedback" for more informa-

tion on using auxiliary inputs.

This property is stored to non-volatile memory and need not be configured on every power-up.

The default is SA_CTL_NON_INVERTED (0x00).

Valid Range

SA_CTL_NON_INVERTED (0x00), SA_CTL_INVERTED (0x01)

Example

// set the auxiliary direction inversion to ‘inverted‘ for channel 0

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_AUX_DIRECTION_INVERSION, SA_CTL_INVERTED

);

280MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

See Also

4.12.3 Aux Input Select, 4.12.6 Aux I/O Module Input0 / Input1 Value, 4.5.6 Control Loop Input

281MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.12.6 Aux I/O Module Input0 / Input1 Value

Definition Value

C-Definition SA_CTL_PKEY_AUX_IO_MODULE_INPUT0_VALUE

Code 0x08110000

ASCII-Command [:PROPerty]:CHANnel#:AUXiliary:IOModule:INPut:VALue#

Type Index Access Volatility Cmd-Group
Attributes

I64 Channel R - X

Definition Value

C-Definition SA_CTL_PKEY_AUX_IO_MODULE_INPUT1_VALUE

Code 0x08110001

ASCII-Command [:PROPerty]:CHANnel#:AUXiliary:IOModule:INPut:VALue#

Type Index Access Volatility Cmd-Group
Attributes

I64 Channel R - X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

These properties hold the input values of the analog inputs of an analog I/O module. Note that an

error is returned if no I/O module is available.

Note further that the interpretation of the value depends on the configured I/O Module Analog

Input Range of the I/O module. Please refer to section 2.19 "Auxiliary Inputs and Outputs" for

more information on using auxiliary inputs.

Example

SA_CTL_Result_t result;

int64_t inputVal;

result = SA_CTL_GetProperty_i64(

dHandle, 0, SA_CTL_PKEY_AUX_IO_MODULE_INPUT0_VALUE, &inputVal, 0

);

if (result == SA_CTL_ERROR_NONE) {

// ‘inputVal‘ holds the current input value of the first

// I/O module input of channel 0

}

282MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

See Also

4.12.3 Aux Input Select, 4.5.32 Control Loop Input Aux Value, 4.5.31 Control Loop Input Sensor

Value, 4.12.6 Aux I/O Module Input0 / Input1 Value, 4.5.6 Control Loop Input

283MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.12.7 Aux Digital Input Value

Definition Value

C-Definition SA_CTL_PKEY_AUX_DIGITAL_INPUT_VALUE

Code 0x080300AD

ASCII-Command [:PROPerty]:MODule#:AUXiliary:DINPut[:VALue]

Type Index Access Volatility Cmd-Group
Attributes

I32 Module R - X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property holds a bit mask that represents the input levels of the general purpose digital inputs

of an I/O module.

Please refer to section 2.19 "Auxiliary Inputs and Outputs" for more information.

Example

SA_CTL_Result_t result;

// read the digital inputs

int32_t input;

result = SA_CTL_GetProperty_i32(dHandle,0,

SA_CTL_PKEY_AUX_DIGITAL_INPUT_VALUE, &input, 0

);

if (result == SA_CTL_ERROR_NONE) {

// ‘input‘ holds the value of the digital inputs

}

See Also

4.12.8 Aux Digital Output Value / Set / Clear

284MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.12.8 Aux Digital Output Value / Set / Clear

Definition Value

C-Definition SA_CTL_PKEY_AUX_DIGITAL_OUTPUT_VALUE

Code 0x080300AE

ASCII-Command [:PROPerty]:MODule#:AUXiliary:DOUTput[:VALue]

Type Index Access Volatility Cmd-Group
Attributes

I32 Module RW V X

Definition Value

C-Definition SA_CTL_PKEY_AUX_DIGITAL_OUTPUT_SET

Code 0x080300B0

ASCII-Command [:PROPerty]:MODule#:AUXiliary:DOUTput:SET

Type Index Access Volatility Cmd-Group
Attributes

I32 Module W V X

Definition Value

C-Definition SA_CTL_PKEY_AUX_DIGITAL_OUTPUT_CLEAR

Code 0x080300B1

ASCII-Command [:PROPerty]:MODule#:AUXiliary:DOUTput:CLEar

Type Index Access Volatility Cmd-Group
Attributes

I32 Module W V X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

These properties hold bit masks that may be used to modify the general purpose digital outputs

of an I/O module. Note that the digital output driver circuit is disabled by default and must be

enabled by setting the SA_CTL_IO_MODULE_OPT_BIT_DIGITAL_OUTPUT_ENABLED bit of the

I/O Module Options property.

Please refer to section 2.19 "Auxiliary Inputs and Outputs" for more information.

285MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Example

SA_CTL_Result_t result;

// set all digital output of the I/O module to a specific value

// DOUT-4 | DOUT-3 | DOUT-2 | DOUT-1 |

// L(0) | H(1) | L(0) | H(1) |

result = SA_CTL_SetProperty_i32(dHandle,0,

SA_CTL_PKEY_AUX_DIGITAL_OUTPUT_VALUE, 0x00000005

);

See Also

4.12.7 Aux Digital Input Value, 4.13.1 I/O Module Options

286MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.12.9 Aux Analog Output Value0 / Value1

Definition Value

C-Definition SA_CTL_PKEY_AUX_ANALOG_OUTPUT_VALUE0

Code 0x08030000

ASCII-Command [:PROPerty]:MODule#:AUXiliary:AOUTput:VALue#

Type Index Access Volatility Cmd-Group
Attributes

I32 Module RW V X

Definition Value

C-Definition SA_CTL_PKEY_AUX_ANALOG_OUTPUT_VALUE1

Code 0x08030001

ASCII-Command [:PROPerty]:MODule#:AUXiliary:AOUTput:VALue#

Type Index Access Volatility Cmd-Group
Attributes

I32 Module RW V X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

These properties specify the output values of the analog outputs of an I/O module. Note that the

analog output driver circuit is in a high-impedance state by default andmust be enabled by setting

the SA_CTL_IO_MODULE_OPT_BIT_ANALOG_OUTPUT_ENABLED bit of the I/O Module Options

property.

The output values are given as signed 16-bit values from −32768 to 32767, where −32768 corre-

sponds to −10V and 32767 to 10V output voltage.

The default value is 0 which corresponds to an output voltage of 0 V.

Valid Range

−32768 . . . 32 767

Example

SA_CTL_Result_t result;

// set the output value of analog output0 (AOUT-1) to zero

// which corresponds to 0V

287MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

result = SA_CTL_SetProperty_i32(dHandle,0,

SA_CTL_PKEY_AUX_ANALOG_OUTPUT_VALUE0, 0

);

See Also

4.12.6 Aux I/O Module Input0 / Input1 Value, 4.13.1 I/O Module Options

288MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.13 I/O Module Properties

4.13.1 I/O Module Options

Definition Value

C-Definition SA_CTL_PKEY_IO_MODULE_OPTIONS

Code 0x0603005D

ASCII-Command [:PROPerty]:MODule#:IOModule:OPTions

Type Index Access Volatility Cmd-Group
Attributes

I32 Module RW V X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property specifies the I/O module options. The value is a bit field containing independent

flags with the following meaning:

Bit C-Definition Short Description

0 SA_CTL_IO_MODULE_OPT_BIT_DIGITAL_OUTPUT_ENABLED Enables or disables the

digital output driver cir-

cuit on the I/O module.

1 SA_CTL_IO_MODULE_OPT_BIT_EVENTS_ENABLED Enables or disables the

event notification for the

digital inputs of an I/O

module.

2 SA_CTL_IO_MODULE_OPT_BIT_ANALOG_OUTPUT_ENABLED Enables or disables the

analog output driver cir-

cuit on the I/O module.

3 .. 31 Reserved These bits are reserved

for future use.

All options are disabled by default, which means that all digital and analog outputs are in a high-

impedance state and the digital input events are disabled.

NOTICE
Note that the events enabled bit refers to the general purpose digital inputs of the

I/O module and not to the digital device trigger input. See section 2.20 "Input

Trigger" for the event notification configuration of the device input trigger.

289MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Note that the I/O Module Voltage property should be set first to define the voltage level of the

digital outputs.

Example

// enable the digital and analog output driver circuit of the I/O module

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_IO_MODULE_OPTIONS,

(SA_CTL_IO_MODULE_OPT_BIT_DIGITAL_OUTPUT_ENABLED |

SA_CTL_IO_MODULE_OPT_BIT_ANALOG_OUTPUT_ENABLED)

);

See Also

4.13.2 I/O Module Voltage

290MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.13.2 I/O Module Voltage

Definition Value

C-Definition SA_CTL_PKEY_IO_MODULE_VOLTAGE

Code 0x06030031

ASCII-Command [:PROPerty]:MODule#:IOModule:VOLTage

Type Index Access Volatility Cmd-Group
Attributes

I32 Module RW V X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property specifies the I/O module output voltage for the digital outputs. The output voltage

should be set before enabling the outputs of the I/Omodule. Note that the voltage setting is global

for all digital output channels of the I/O module.

The default value is SA_CTL_IO_MODULE_VOLTAGE_3V3 (0).

Valid Range

SA_CTL_IO_MODULE_VOLTAGE_3V3 (0),

SA_CTL_IO_MODULE_VOLTAGE_5V (1)

Example

// set the output driver voltage level to 5V

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_IO_MODULE_VOLTAGE,

SA_CTL_IO_MODULE_VOLTAGE_5V

);

See Also

4.13.1 I/O Module Options

291MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.13.3 I/O Module Analog Input Range

Definition Value

C-Definition SA_CTL_PKEY_IO_MODULE_ANALOG_INPUT_RANGE

Code 0x060300A0

ASCII-Command [:PROPerty]:MODule#:IOModule:AINPut:RANGe

Type Index Access Volatility Cmd-Group
Attributes

I32 Module RW V X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property specifies the I/O module analog input range. This setting configures the analog gain

settings of the ADCs of the I/O module. The inputs allow bipolar as well as unipolar operation. To

achieve the best performance of the ADC it is recommended to always use the lowest full range

setting that fits the desired analog input range.

Note that the range setting does not influence the digital representation of the input value. The

signed value of 217 corresponds to a bipolar full range input of 10.24V. This means that e.g. an

analog voltage of 2.56V always returns a digital value of 32767 regardless of the actual range

setting. The advantage of this representation is that e.g. configured PID gains or threshold limits

must not be adjusted after changing the input range while the best matching analog gain is used

for the analog to digital conversion. The following table summarizes the digital representations of

the analog input voltage and their maximum values for the different gain settings:

Analog Voltage Bipol. ±10V Bipol. ±5V Bipol. ±2.5V Unipol. 10V Unipol. 5V

+10.24V 131071 65535 32767 131071 65535

+5.12V 65535 65535 32767 65535 65535

+2.56V 32767 32767 32767 32767 32767

0V 0 0 0 0 0

-2.56V -32768 -32768 -32768 0 0

-5.12V -65536 -65536 -32768 0 0

-10.24V -131072 -65536 -32768 0 0

Note that the input range setting is global for all analog inputs of the I/O module.

This property is stored to non-volatile memory and need not be configured on every power-up.

The default value is SA_CTL_IO_MODULE_ANALOG_INPUT_RANGE_BI_10V (0).

Note that setting this property implicitly stops the channel and disables the control-loop.

292MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

WARNING
Magnetic driven positioners are not self-locking. Disabling the control-loop re-

moves any holding force from the positioner. Make sure not to damage any

equipment when the positioner changes its position unintentionally!

Valid Range

SA_CTL_IO_MODULE_ANALOG_INPUT_RANGE_BI_10V (0),

SA_CTL_IO_MODULE_ANALOG_INPUT_RANGE_BI_5V (1),

SA_CTL_IO_MODULE_ANALOG_INPUT_RANGE_BI_2_5V (2),

SA_CTL_IO_MODULE_ANALOG_INPUT_RANGE_UNI_10V (3),

SA_CTL_IO_MODULE_ANALOG_INPUT_RANGE_UNI_5V (4)

Example

// set the analog input range to +/-5V

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_IO_MODULE_ANALOG_INPUT_RANGE,

SA_CTL_IO_MODULE_ANALOG_INPUT_RANGE_BI_5V

);

See Also

4.13.1 I/O Module Options, 4.12.6 Aux I/O Module Input0 / Input1 Value

293MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.14 Input Trigger Properties

4.14.1 Device Input Trigger Mode

Definition Value

C-Definition SA_CTL_PKEY_DEV_INPUT_TRIG_MODE

Code 0x060D0087

ASCII-Command [:PROPerty]:DEVice:TRIGger:INPut:MODE

Type Index Access Volatility Cmd-Group
Attributes

I32 Device RW V -

Applicable for

USB Interface SA_CTL_INTERFACE_USB (0x0001)

Ethernet Interface SA_CTL_INTERFACE_ETHERNET (0x0002)

Description

This property specifies the input trigger mode of the device. The input trigger may be used to

synchronize the device to external events. If no I/O module is available this property returns a

SA_CTL_ERROR_NO_IOM_PRESENT error. Please refer to section 2.20 "Input Trigger" for more

information.

The default value is SA_CTL_DEV_INPUT_TRIG_MODE_DISABLED (0).

Valid Range

SA_CTL_DEV_INPUT_TRIG_MODE_DISABLED (0),

SA_CTL_DEV_INPUT_TRIG_MODE_EMERGENCY_STOP (1),

SA_CTL_DEV_INPUT_TRIG_MODE_STREAM (2),

SA_CTL_DEV_INPUT_TRIG_MODE_CMD_GROUP (3)

SA_CTL_DEV_INPUT_TRIG_MODE_EVENT (4)

Example

// set input trigger mode to external stream sync

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_DEV_INPUT_TRIG_MODE,

SA_CTL_DEV_INPUT_TRIG_MODE_STREAM

);

294MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

See Also

4.14.2 Device Input Trigger Condition, 4.10.1 Stream Base Rate, 4.10.2 Stream External Sync Rate

295MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.14.2 Device Input Trigger Condition

Definition Value

C-Definition SA_CTL_PKEY_DEV_INPUT_TRIG_CONDITION

Code 0x060D005A

ASCII-Command [:PROPerty]:DEVice:TRIGger:INPut:CONDition

Type Index Access Volatility Cmd-Group
Attributes

I32 Device RW V -

Applicable for

USB Interface SA_CTL_INTERFACE_USB (0x0001)

Ethernet Interface SA_CTL_INTERFACE_ETHERNET (0x0002)

Description

This property defines the active edge for the input trigger signal.

The default value is SA_CTL_TRIGGER_CONDITION_RISING (0).

Valid Range

SA_CTL_TRIGGER_CONDITION_RISING (0), SA_CTL_TRIGGER_CONDITION_FALLING (1)

Example

// set input trigger condition to "rising"

result = SA_CTL_SetProperty_i32(

dHandle,

0,

SA_CTL_PKEY_DEV_INPUT_TRIG_CONDITION,

SA_CTL_TRIGGER_CONDITION_RISING

);

See Also

4.14.1 Device Input Trigger Mode, 4.10.1 Stream Base Rate, 4.10.2 Stream External Sync Rate

296MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.15 Output Trigger Properties

4.15.1 Channel Output Trigger Mode

Definition Value

C-Definition SA_CTL_PKEY_CH_OUTPUT_TRIG_MODE

Code 0x060E0087

ASCII-Command [:PROPerty]:CHANnel#:TRIGger:OUTPut:MODE

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel RW V X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property specifies the output trigger mode of a channel. Note that further configuration of

the output trigger should be done before it is enabled. If no I/O module is available this property

returns a SA_CTL_ERROR_NO_IOM_PRESENT error.

Note for the position compare mode: if the Channel Position Compare Limit Max is set to a lower

value than the Channel Position Compare Limit Min then this misconfiguration is indicated by a

returned SA_CTL_ERROR_INVALID_CONFIGURATION error.

Please refer to section 2.21 "Output Trigger" for more information.

The default value is SA_CTL_CH_OUTPUT_TRIG_MODE_CONSTANT (0).

Valid Range

SA_CTL_CH_OUTPUT_TRIG_MODE_CONSTANT (0),

SA_CTL_CH_OUTPUT_TRIG_MODE_POSITION_COMPARE (1),

SA_CTL_CH_OUTPUT_TRIG_MODE_TARGET_REACHED (2),

SA_CTL_CH_OUTPUT_TRIG_MODE_ACTIVELY_MOVING (3)

Example

// set output trigger mode for channel 1

result = SA_CTL_SetProperty_i32(

dHandle,

1,

SA_CTL_PKEY_CH_OUTPUT_TRIG_MODE,

297MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

SA_CTL_CH_OUTPUT_TRIG_MODE_POSITION_COMPARE

);

See Also

4.15.4 Channel Position Compare Start Threshold, 4.15.5 Channel Position Compare Increment,

4.15.6 Channel Position Compare Direction, 4.15.2 Channel Output Trigger Polarity, 4.15.3 Channel

Output Trigger Pulse Width

298MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.15.2 Channel Output Trigger Polarity

Definition Value

C-Definition SA_CTL_PKEY_CH_OUTPUT_TRIG_POLARITY

Code 0x060E005B

ASCII-Command [:PROPerty]:CHANnel#:TRIGger:OUTPut:POLarity

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel RW V X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property defines the polarity of the output trigger signal. If set to active high then the idle level

is low and a high pulse is generated when the trigger occurs. If set to active low then the idle level

is high and a low pulse is generated when the trigger occurs.

The default polarity is SA_CTL_TRIGGER_POLARITY_ACTIVE_HIGH (1).

Valid Range

SA_CTL_TRIGGER_POLARITY_ACTIVE_LOW (0),

SA_CTL_TRIGGER_POLARITY_ACTIVE_HIGH (1)

Example

// set output trigger polarity for channel 1 to ‘active high‘

result = SA_CTL_SetProperty_i32(

dHandle,

1,

SA_CTL_PKEY_CH_OUTPUT_TRIG_POLARITY,

SA_CTL_TRIGGER_POLARITY_ACTIVE_HIGH

);

See Also

4.15.1 Channel Output Trigger Mode, 4.15.4 Channel Position Compare Start Threshold, 4.15.5

Channel Position Compare Increment, 4.15.6 Channel Position Compare Direction, 4.15.3 Channel

Output Trigger Pulse Width

299MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.15.3 Channel Output Trigger Pulse Width

Definition Value

C-Definition SA_CTL_PKEY_CH_OUTPUT_TRIG_PULSE_WIDTH

Code 0x060E005C

ASCII-Command [:PROPerty]:CHANnel#:TRIGger:OUTPut:PWIDth

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel RW V X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property specifies the pulse width of the trigger output pulse in ns.

Note that the configured pulse width includes the duration of the pulse as well as the duration of

the pause. E.g. when setting the Channel Output Trigger Pulse Width to 1000ns pulses with 500ns

high level and 500ns low level will be generated.

The default pulse width is 1000ns.

Valid Range

100ns . . . 4× 109 ns

Example

// set output trigger pulse width for channel 1 to 1us

result = SA_CTL_SetProperty_i32(

dHandle, 1, SA_CTL_PKEY_CH_OUTPUT_TRIG_PULSE_WIDTH, 1000

);

See Also

4.15.1 Channel Output Trigger Mode, 4.15.4 Channel Position Compare Start Threshold, 4.15.5

Channel Position Compare Increment, 4.15.6 Channel Position Compare Direction, 4.15.2 Channel

Output Trigger Polarity

300MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.15.4 Channel Position Compare Start Threshold

Definition Value

C-Definition SA_CTL_PKEY_CH_POS_COMP_START_THRESHOLD

Code 0x060E0058

ASCII-Command [:PROPerty]:CHANnel#:TRIGger:PCOMpare:THReshold[:STARt]

Type Index Access Volatility Cmd-Group
Attributes

I64 Channel RW V X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property defines the start threshold value in pm or n° for the position compare output trigger.

As soon as the position passes this threshold in the configured direction (see Channel Position

Compare Direction) an output pulse is generated. Additionally the threshold is incremented by

the value of the Channel Position Compare Increment to define the next trigger threshold. Please

refer to section 2.21 "Output Trigger" for more information.

The default value is 1× 109.

Valid Range

−100× 1012 . . . 100× 1012 pm or n°.

Example

// set output trigger start threshold for channel 1 to 1mm

result = SA_CTL_SetProperty_i64(

dHandle, 1, SA_CTL_PKEY_CH_POS_COMP_START_THRESHOLD, 1e9

);

See Also

4.15.1 Channel Output Trigger Mode, 4.15.5 Channel Position Compare Increment, 4.15.6 Channel

Position Compare Direction, 4.15.2 Channel Output Trigger Polarity, 4.15.3 Channel Output Trigger

Pulse Width

301MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.15.5 Channel Position Compare Increment

Definition Value

C-Definition SA_CTL_PKEY_CH_POS_COMP_INCREMENT

Code 0x060E0059

ASCII-Command [:PROPerty]:CHANnel#:TRIGger:PCOMpare:INCRement

Type Index Access Volatility Cmd-Group
Attributes

I64 Channel RW V X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property defines the position compare output trigger increment in pm or n°. Please refer to

section 2.21 "Output Trigger" for more information.

The default value is 1× 109.

Valid Range

1 . . . 1× 1012 pm or n°.

Example

// set position compare increment for channel 1 to 100um

result = SA_CTL_SetProperty_i64(

dHandle, 1, SA_CTL_PKEY_CH_POS_COMP_INCREMENT, 100e6

);

See Also

4.15.1 Channel Output Trigger Mode, 4.15.4 Channel Position Compare Start Threshold, 4.15.6

Channel Position Compare Direction, 4.15.2 Channel Output Trigger Polarity, 4.15.3 Channel Out-

put Trigger Pulse Width

302MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.15.6 Channel Position Compare Direction

Definition Value

C-Definition SA_CTL_PKEY_CH_POS_COMP_DIRECTION

Code 0x060E0026

ASCII-Command [:PROPerty]:CHANnel#:TRIGger:PCOMpare:DIRection

Type Index Access Volatility Cmd-Group
Attributes

I32 Channel RW V X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property defines how the position value and the configured trigger threshold are compared

against each other.

The following trigger conditions are available:

Condition Name Short Description

0x00 SA_CTL_FORWARD_DIRECTION The trigger pulse is output when the position

value passes the threshold from below.

0x01 SA_CTL_BACKWARD_DIRECTION The trigger pulse is output when the position

value passes the threshold from above.

0x02 SA_CTL_EITHER_DIRECTION The trigger pulse is output when the posi-

tion value passes the threshold from below or

above.

Please refer to section 2.21 "Output Trigger" for more information.

The default direction is SA_CTL_FORWARD_DIRECTION (0x00).

Example

// set output trigger condition for channel 1 to forward

result = SA_CTL_SetProperty_i32(

dHandle,

1,

SA_CTL_PKEY_CH_POS_COMP_DIRECTION,

SA_CTL_FORWARD_DIRECTION

);

303MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

See Also

4.15.1 Channel Output Trigger Mode, 4.15.4 Channel Position Compare Start Threshold, 4.15.5

Channel Position Compare Increment, 4.15.2 Channel Output Trigger Polarity, 4.15.3 Channel Out-

put Trigger Pulse Width 4.15.7 Channel Position Compare Limit Min, 4.15.8 Channel Position Com-

pare Limit Max

304MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.15.7 Channel Position Compare Limit Min

Definition Value

C-Definition SA_CTL_PKEY_CH_POS_COMP_LIMIT_MIN

Code 0x060E0020

ASCII-Command [:PROPerty]:CHANnel#:TRIGger:PCOMpare:LMIN

Type Index Access Volatility Cmd-Group
Attributes

I64 Channel RW V X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property defines the lower limit for the position compare output trigger in pm or n°. The limits

act as an additional gate for the generation of output pulses. Output pulses are only generated

when the current position lies between the configured minimum and maximum limits. Note that

the maximum limit must be configured to a higher value than the minimum limit for the limit

checks to be active. If both limits are set to the same value the checks are disabled and output

pulses are generated according to the configured start threshold, increment and direction. Please

refer to section 2.21 "Output Trigger" for more information.

The default value is 0.

Valid Range

−100× 1012 . . . 100× 1012 pm or n°.

Example

// set position compare lower limit for channel 1 to 1mm

result = SA_CTL_SetProperty_i64(

dHandle, 1, SA_CTL_PKEY_CH_POS_COMP_LIMIT_MIN, 1e9

);

305MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

See Also

4.15.1 Channel Output Trigger Mode, 4.15.4 Channel Position Compare Start Threshold, 4.15.5

Channel Position Compare Increment, 4.15.6 Channel Position Compare Direction, 4.15.2 Chan-

nel Output Trigger Polarity, 4.15.3 Channel Output Trigger Pulse Width, 4.15.8 Channel Position

Compare Limit Max

306MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.15.8 Channel Position Compare Limit Max

Definition Value

C-Definition SA_CTL_PKEY_CH_POS_COMP_LIMIT_MAX

Code 0x060E0021

ASCII-Command [:PROPerty]:CHANnel#:TRIGger:PCOMpare:LMAX

Type Index Access Volatility Cmd-Group
Attributes

I64 Channel RW V X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)

Description

This property defines the upper limit for the position compare output trigger in pm or n°. The

limits act as an additional gate for the generation of output pulses. Output pulses are only gener-

ated when the current position lies between the configured minimum and maximum limits. Note

that the maximum limit must be configured to a higher value than the minimum limit for the limit

checks to be active. If both limits are set to the same value the checks are disabled and output

pulses are generated according to the configured start threshold, increment and direction. Please

refer to section 2.21 "Output Trigger" for more information.

The default value is 0.

Valid Range

−100× 1012 . . . 100× 1012 pm or n°.

Example

// set position compare upper limit for channel 1 to 2mm

result = SA_CTL_SetProperty_i64(

dHandle, 1, SA_CTL_PKEY_CH_POS_COMP_LIMIT_MAX, 2e9

);

307MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

See Also

4.15.1 Channel Output Trigger Mode, 4.15.4 Channel Position Compare Start Threshold, 4.15.5

Channel Position Compare Increment, 4.15.6 Channel Position Compare Direction, 4.15.2 Chan-

nel Output Trigger Polarity, 4.15.3 Channel Output Trigger Pulse Width, 4.15.7 Channel Position

Compare Limit Min

308MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.16 Hand Control Module Properties

4.16.1 Hand Control Module Lock Options

Definition Value

C-Definition SA_CTL_PKEY_HM_LOCK_OPTIONS

Code 0x020C0083

ASCII-Command [:PROPerty]:DEVice:HMODule:LOPTions[:CURRent]

Type Index Access Volatility Cmd-Group
Attributes

I32 Device RW V -

Applicable for

USB Interface SA_CTL_INTERFACE_USB (0x0001)

Ethernet Interface SA_CTL_INTERFACE_ETHERNET (0x0002)

Description

This property defines the different possible lock states of an attached hand control module. The

value is a bit field containing independent flags with the following meaning:

Table 4.2 – Hand Control Module Lock Options Bits

Bit C-Definition Short Description

0 SA_CTL_HM1_LOCK_OPT_BIT_GLOBAL Fully disables control over the hand

controller.

1 SA_CTL_HM1_LOCK_OPT_BIT_CONTROL Disables the control inputs (Encoder,

Joystick, etc.).

4 SA_CTL_HM1_LOCK_OPT_BIT_CHANNEL_MENU Hides the Channel Settingsmenu.

5 SA_CTL_HM1_LOCK_OPT_BIT_GROUP_MENU Hides the Group Settingsmenu.

6 SA_CTL_HM1_LOCK_OPT_BIT_SETTINGS_MENU Hides the General Settingsmenu.

7 SA_CTL_HM1_LOCK_OPT_BIT_LOAD_CFG_MENU Hides the Load Config menu.

8 SA_CTL_HM1_LOCK_OPT_BIT_SAVE_CFG_MENU Hides the Save Config menu.

9 SA_CTL_HM1_LOCK_OPT_BIT_CTRL_MODE_PARAM_MENU Hides the generic control mode pa-

rameter menu.

12 SA_CTL_HM1_LOCK_OPT_BIT_CHANNEL_NAME Hides the Set Channel Name menu

entry.

13 SA_CTL_HM1_LOCK_OPT_BIT_POS_TYPE Hides the Positioner Typemenu entry.

14 SA_CTL_HM1_LOCK_OPT_BIT_SAFE_DIR Hides the Safe Directionmenu entry.

Continued on next page

309MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

Table 4.2 – Continued from previous page

Bit C-Definition Short Description

15 SA_CTL_HM1_LOCK_OPT_BIT_CALIBRATE Hides the Sensor Calibrationmenu.

16 SA_CTL_HM1_LOCK_OPT_BIT_REFERENCE Hides the Find Referencemenu entry.

17 SA_CTL_HM1_LOCK_OPT_BIT_SET_POSITION Hides the Set Zero Position menu en-

try.

18 SA_CTL_HM1_LOCK_OPT_BIT_MAX_CLF Hides the Max Closed-Loop Frequency

menu entry.

19 SA_CTL_HM1_LOCK_OPT_BIT_POWER_MODE Hides the Sensor Power Mode menu

entry.

20 SA_CTL_HM1_LOCK_OPT_BIT_ACTUATOR_MODE Hides the Actuator Modemenu entry.

Undefined flags are reserved for future use. These flags should be set to zero.

Note that this property is volatile. In order to alter the lock bits across sessions the Hand Control

Module Default Lock Options property must be used.

Example

// disable control inputs for the hand control module

result = SA_CTL_SetProperty_i32(

dHandle,0,SA_CTL_PKEY_HM_LOCK_OPTIONS,SA_CTL_HM1_LOCK_OPT_BIT_CONTROL

);

See Also

4.16.2 Hand Control Module Default Lock Options

310MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.16.2 Hand Control Module Default Lock Options

Definition Value

C-Definition SA_CTL_PKEY_HM_DEFAULT_LOCK_OPTIONS

Code 0x020C0084

ASCII-Command [:PROPerty]:DEVice:HMODule:LOPTions:DEFault

Type Index Access Volatility Cmd-Group
Attributes

I32 Device RW NV -

Applicable for

USB Interface SA_CTL_INTERFACE_USB (0x0001)

Ethernet Interface SA_CTL_INTERFACE_ETHERNET (0x0002)

Description

This property specifies the default lock state of the hand control module at startup. It is the non-

volatile version of the Hand Control Module Lock Options property. See table 4.2 for a description

of the bit field.

Example

// hide channel and group menu by default

int32_t defaultLockState = (SA_CTL_HM1_LOCK_OPT_BIT_CHANNEL_MENU |

SA_CTL_HM1_LOCK_OPT_BIT_GROUP_MENU);

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_HM_DEFAULT_LOCK_OPTIONS, defaultLockState

);

See Also

4.16.1 Hand Control Module Lock Options

311MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.17 API Properties

4.17.1 Event Notification Options

Definition Value

C-Definition SA_CTL_PKEY_API_EVENT_NOTIFICATION_OPTIONS

Code 0xF010005D

ASCII-Command N/A

Type Index Access Volatility Cmd-Group
Attributes

I32 API RW V -

Description

This property may be used to configure the event notifications of the API. The value is a bit field

containing independent flags.

Bit C-Definition Code

0 SA_CTL_EVT_OPT_BIT_REQUEST_READY_ENABLED 0x00000001

Undefined flags are reserved for future use. These flags should be set to zero.

Request Ready Enabled (Bit 0) Enables the generation of request ready events. See section 2.3.5

"Request Ready Notification" for more information.

The default value is 0 (all API events disabled).

Note that changing this property affects only new requests sent out after changing this property,

not requests that were sent out before but have not received an answer yet.

NOTICE
Although this property is a setting of the API, an active connection to a device is

still required. The setting applies to every individual device connection indepen-

dently. Closing the connection to a device resets the setting to its default.

Example

// enable the request ready events of the API

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_API_EVENT_NOTIFICATION_OPTIONS,

SA_CTL_EVT_OPT_BIT_REQUEST_READY_ENABLED

);

312MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

See Also

2.4 Event Notifications, 2.3.5 Request Ready Notification, 5.2.24 Request Ready

313MCS2 Programmer’s Guide

4 PROPERTY REFERENCE

4.17.2 Auto Reconnect

Definition Value

C-Definition SA_CTL_PKEY_API_AUTO_RECONNECT

Code 0xF01000A1

ASCII-Command N/A

Type Index Access Volatility Cmd-Group
Attributes

I32 API RW V -

Description

This property configures the automatic reconnect feature of the API. In the default configuration

the reconnect feature is disabled. When enabled the API detects lost connections and tries to

reconnect to the device. Note that during the reconnect all device requests functions block until

the reconnect is finished.

NOTICE
Although this property is a setting of the API, an active connection to a device is

still required. The setting applies to every individual device connection indepen-

dently. Closing the connection to a device resets the setting to its default.

Valid Range

SA_CTL_ENABLED (0x01), SA_CTL_DISABLED (0x00)

Example

// enable automatic reconnect

result = SA_CTL_SetProperty_i32(

dHandle, 0, SA_CTL_PKEY_API_AUTO_RECONNECT, SA_CTL_ENABLED);

314MCS2 Programmer’s Guide

5 EVENT REFERENCE

5.1 Event Summary

An event always carries a 32-bit parameter. The meaning of this parameter depends on the event.

The "Parameter" column in the following table indicates the usage of the parameter.

Table 5.1 – Event Summary

Event Code Index Parameter Page

None 0x0000 N/A N/A 317

Movement Finished 0x0001 Ch Result Code 317

Sensor State Changed 0x0002 Ch New State 319

Reference Found 0x0003 Ch N/A 319

Following Error Limit 0x0004 Ch N/A 320

Holding Aborted 0x0005 Ch Result Code 317

Positioner Type Changed 0x0006 Ch New Positioner Type Code 318

Phasing Finished 0x0007 Ch Result Code 318

Sensor Module State Changed 0x4000 Mod New State 320

Over Temperature 0x4001 Mod Temperature 320

Power Supply Overload 0x4002 Mod N/A 321

Power Supply Failure 0x4003 Mod N/A 321

Fan Failure State Changed 0x4004 Mod New State 322

Adjustment Finished 0x4010 Mod Result Code 322

Adjustment State Changed 0x4011 Mod New State 322

Adjustment Update 0x4012 Mod Result Code 323

Stream Finished 0x8000 Dev Stream Handle, Index,

Result Code

323

Stream Ready 0x8001 Dev Stream Handle 324

Stream Triggered 0x8002 Dev Stream Handle 324

Command Group Triggered 0x8010 Dev Transmit Handle, Res. Code 325

Hand Control Module State Changed 0x8020 Dev New State 325

Continued on next page

315MCS2 Programmer’s Guide

5 EVENT REFERENCE

Table 5.1 – Continued from previous page

Event Code Index Parameter Page

Emergency Stop Triggered 0x8030 Dev N/A 326

External Input Triggered 0x8040 Dev Input Index 326

Request Ready 0xf000 Any Request ID, Request Type,

Data Type, Array Size,

Property Key

326

Connection Lost 0xf001 N/A N/A 327

316MCS2 Programmer’s Guide

5 EVENT REFERENCE

5.2 Detailed Event Description

5.2.1 None

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_NONE 0x0000 N/A N/A

Description

This event type is a place holder indicating that no event occurred. The index and parameter fields

are undefined.

5.2.2 Movement Finished

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_MOVEMENT_FINISHED 0x0001 Ch Result Code

Description

This event is generated when a channel has finished a movement command (either successful or

unsuccessful). See also section 2.7.7 "Movement Feedback".

Parameter

The event parameter holds the result code. If the movement command finished successfully then

the result is SA_CTL_ERROR_NONE. Otherwise the result code indicates what caused the failure.

See table A.1 for a list of result codes.

5.2.3 Holding Aborted

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_HOLDING_ABORTED 0x0005 Ch Result Code

317MCS2 Programmer’s Guide

5 EVENT REFERENCE

Description

This event is generated when a channel detects an endstop (or a configured following error limit

is exceeded) while in holding state. Note that setting some specific properties may also abort the

holding. E.g. disabling the power supply or amplifier as well as setting the sensor power mode

aborts the holding. Subsequently this event is generated.

Parameter

The event parameter holds the result code: SA_CTL_ERROR_END_STOP_REACHED in case the

holding was aborted due to an endstop or SA_CTL_ERROR_FOLLOWING_ERR_LIMIT in case the

holding was aborted due to exceeding a following error limit. See table A.1 for a list of result codes.

5.2.4 Positioner Type Changed

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_POSITIONER_TYPE_CHANGED 0x0006 Ch Positioner Type Code

Description

This event is generated when a positioner type of a channel changes to a new type. Note that this

event is not sent to the interface which actually changed the type. This means that the event is

sent to the host PC if the positioner type was changed on the hand-control-module and vice versa.

In case of automatic configuration, the event will be sent to all available interfaces. See section 2.6

"Positioner Types" for more information.

Parameter

The event parameter holds the new positioner type code for the channel. Please refer to theMCS2

Positioner Types document for a list of possible positioner types.

5.2.5 Phasing Finished

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_PHASING_FINISHED 0x0007 Ch Result Code

318MCS2 Programmer’s Guide

5 EVENT REFERENCE

Description

This event is generated when a channel of a Magnetic Driver has finished a phasing sequence. See

section 2.22 "Phasing of Magnetic Driven Positioners" for more information.

Parameter

The event parameter holds the result code. If the phasing sequence finished successfully then the

result is SA_CTL_ERROR_NONE. Otherwise the result code indicates what caused the failure. See

table A.1 for a list of result codes.

5.2.6 Sensor State Changed

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_SENSOR_STATE_CHANGED 0x0002 Ch New State

Description

A sensor was attached to or detached from a sensor module.

Parameter

The parameter value will be one of:

SA_CTL_EVENT_PARAM_ATTACHED (0x00000001),

SA_CTL_EVENT_PARAM_DETACHED (0x00000000)

5.2.7 Reference Found

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_REFERENCE_FOUND 0x0003 Ch N/A

Description

This event is generated during a reference movement. It is generated at the moment the physical

position has been determined. Depending on the configuration of the referencing the movement

might be continued and stopped at a later time. See section 2.7.2 "Referencing" for more infor-

mation.

319MCS2 Programmer’s Guide

5 EVENT REFERENCE

5.2.8 Following Error Limit

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_FOLLOWING_ERR_LIMIT 0x0004 Ch N/A

Description

This event is generated if the configured following error limit is exceeded during a closed-loop

movement. See section 2.14 "Following Error Detection" for more information.

5.2.9 Sensor Module State Changed

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_SM_STATE_CHANGED 0x4000 Mod New State

Description

A sensor module was attached to or detached from a driver module.

Parameter

The parameter value will be one of:

SA_CTL_EVENT_PARAM_ATTACHED (0x00000001),

SA_CTL_EVENT_PARAM_DETACHED (0x00000000)

5.2.10 Over Temperature

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_OVER_TEMPERATURE 0x4001 Mod Temperature

320MCS2 Programmer’s Guide

5 EVENT REFERENCE

Description

The module detected an over-temperature condition of a driver amplifier. Note that the amplifier

circuit is automatically disabled at the occurrence of an over-temperature condition. The device

must be cooled down before being able to continue to use the device. The Module State property

(SA_CTL_MOD_STATE_BIT_OVER_TEMPERATURE) may be polled to know when the over tem-

perature condition has passed by.

Parameter

The parameter holds the measured temperature in ◦C.

5.2.11 Power Supply Overload

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_POWER_SUPPLY_OVERLOAD 0x4002 Mod N/A

SA_CTL_EVENT_HIGH_VOLTAGE_OVERLOAD1 0x4002 Mod N/A

Description

The module detected an overload condition of the power supply. See section 2.9.3 "Hardware

Monitoring" for more information.

5.2.12 Power Supply Failure

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_POWER_SUPPLY_FAILURE 0x4003 Mod N/A

Description

The module detected a failure condition or under-voltage of the power supply. See section 2.9.3

"Hardware Monitoring" for more information.

1This definition is deprecated and may be removed in future releases.

321MCS2 Programmer’s Guide

5 EVENT REFERENCE

5.2.13 Fan Failure State Changed

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_FAN_FAILURE_STATE_CHANGED 0x4004 Mod New State

Description

The module detected a change of the state of the cooling fan failure detection.

Parameter

If a blockage was detected the parameter value will be one, if the blockage ended and the fan

spins freely again the parameter value will be zero.

5.2.14 Adjustment Finished

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_ADJUSTMENT_FINISHED 0x4010 Mod Result Code

Description

This event is generated when a module adjustment process has finished (either successful or un-

successful).

Parameter

The event parameter holds the result code. If the adjustment finished successfully then the result

is SA_CTL_ERROR_NONE. Otherwise the result code indicates what caused the failure. See table

A.1 for a list of result codes.

5.2.15 Adjustment State Changed

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_ADJUSTMENT_STATE_CHANGED 0x4011 Mod New State

322MCS2 Programmer’s Guide

5 EVENT REFERENCE

Description

This event is generated when a module adjustment state changes.

Parameter

The event parameter holds the new state of the adjustment process.

5.2.16 Adjustment Update

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_ADJUSTMENT_UPDATE 0x4012 Mod Result Code

Description

This event is generated when a module adjustment update occurs.

Parameter

The event parameter holds the result code. If the adjustment update finished successfully then

the result is SA_CTL_ERROR_NONE. Otherwise the result code indicates what caused the failure.

See table A.1 for a list of result codes.

5.2.17 Stream Finished

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_STREAM_FINISHED 0x8000 Dev Handle Index Result Code

Description

This event indicates that a trajectory stream has come to an end. See section 2.18 "Trajectory

Streaming" for more information.

323MCS2 Programmer’s Guide

5 EVENT REFERENCE

Parameter

The parameter holds information to further specify the event.

• Stream Handle The corresponding stream handle.

• Index The device/channel index that caused the given result code.

• Result Code The result of the trajectory streaming. If it finished successfully then the result

is SA_CTL_ERROR_NONE. Otherwise the result code indicates what caused the failure. See

table A.1 for a list of result codes.

5.2.18 Stream Ready

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_STREAM_READY 0x8001 Dev Handle Reserved

Description

This event indicates that the internal trajectory stream buffer contains enough data to start the

stream. In case of direct streaming the stream will start automatically. Otherwise the device is

ready to receive a start trigger for the stream. See section 2.18 "Trajectory Streaming" for more

information.

Parameter

The parameter holds the corresponding stream handle.

5.2.19 Stream Triggered

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_STREAM_TRIGGERED 0x8002 Dev Handle Reserved

Description

This event indicates that the controller has started to execute the trajectory stream. See section

2.18 "Trajectory Streaming" for more information.

324MCS2 Programmer’s Guide

5 EVENT REFERENCE

Parameter

The parameter holds the corresponding stream handle.

5.2.20 Command Group Triggered

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_CMD_GROUP_TRIGGERED 0x8010 Dev Handle Reserved Result Code

Description

This event notifies that a command group has been executed (either directly or via a configured

external trigger). See section 2.17 "Command Groups" for more information.

Parameter

The parameter holds the corresponding transmit handle and result code.

5.2.21 Hand Control Module State Changed

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_SM_STATE_CHANGED 0x4000 Dev New State

Description

A hand control module was attached to or detached from the device.

Parameter

The parameter value will be one of:

SA_CTL_EVENT_PARAM_ATTACHED (0x00000001),

SA_CTL_EVENT_PARAM_DETACHED (0x00000000)

325MCS2 Programmer’s Guide

5 EVENT REFERENCE

5.2.22 Emergency Stop Triggered

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_EMERGENCY_STOP_TRIGGERED 0x8030 Dev N/A

Description

This event notifies that an emergency stop condition has been detected. See section 2.20.2 "Emer-

gency Stop Mode" for more information.

5.2.23 External Input Triggered

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_EXT_INPUT_TRIGGERED 0x8040 Dev Input Index

Description

This event notifies that an falling or rising edge was detected on the external trigger input. See

section 2.20.5 "Event Trigger Mode" for more information.

Parameter

The parameter holds the index of the input trigger (currently always 0).

5.2.24 Request Ready

Definition

C Definition Code Index 63-32

SA_CTL_EVENT_REQUEST_READY 0xf000 Any Property Key

31-24 23-16 15-8 7-0

Size Data Type Rq. Type Rq. ID

326MCS2 Programmer’s Guide

5 EVENT REFERENCE

Description

The request ready event is generated by the API when the result of an asynchronous request

is received. The event is also generated in case of a request timeout or any other error. After

the event has been received the result of the asynchronous operation can be retrieved using the

SA_CTL_ReadProperty_x, SA_CTL_WaitForWrite functions. By waiting for this event, it is

guaranteed that these functions won’t block and return a result immediately. This event is not

generated if the retrieve function for this request has already been called.

This event needs to be enabled using the Event Notification Options property.

Parameter

The parameters store information needed to retrieve the result of the asynchronous request. The

index parameter is same index as passed to the request function. Depending on the property key

this is either a device, module or channel index.

• Rq. ID The request ID is identical to the one returned by the asynchronous request function

and can be used to associate this event with open requests.

• Rq. Type The request type allows to differentiate between read and write requests. Possible

values are SA_CTL_EVENT_REQ_READY_TYPE_READ (0x00) or

SA_CTL_EVENT_REQ_READY_TYPE_WRITE (0x01)

• Data Type Indicates the type of the requested property. This information is needed to

call the correct SA_CTL_ReadProperty_x function. If the property read failed, the data

type is unknown and has a value of SA_CTL_DTYPE_NONE (0xff). In this case any of the

SA_CTL_ReadProperty_x functions can be used to retrieve the error code.

• Size The array size stores the size of the received value. For integer properties this is the

number of elements and for string properties the number of characters. Note that for strings

the required buffer size is one byte larger because of the null terminator. This field is only

set for successful property read requests.

• Property Key Key of the requested property.

Parameters can be extracted using the following macros:

SA_CTL_EVENT_REQ_READY_ID(),

SA_CTL_EVENT_REQ_READY_TYPE(),

SA_CTL_EVENT_REQ_READY_DATA_TYPE(),

SA_CTL_EVENT_REQ_READY_ARRAY_SIZE(),

SA_CTL_EVENT_REQ_READY_PROPERTY_KEY()

5.2.25 Connection Lost

Definition

C Definition Code Index 31-24 23-16 15-8 7-0

SA_CTL_EVENT_CONNECTION_LOST 0xf001 N/A N/A

327MCS2 Programmer’s Guide

5 EVENT REFERENCE

Description

The connection to the device has been lost. All functions requiring communication with the de-

vice will fail with SA_CTL_ERROR_COMMUNICATION_FAILED. After receiving this event the device

should be closed using SA_CTL_Close.

328MCS2 Programmer’s Guide

6 ASCII INTERFACE

As an alternative to control the MCS2 using the SmarActCTL library, the device also supports con-

trol using an ASCII protocol. To simplify the entry and overall operation this protocol is (with some

exceptions) strongly orientated towards the well established SCPI 1 standard.

NOTICE
The ASCII Interface is only available for devices with an ethernet port. For general

information on how to configure the ethernet interface please refer to theMCS2

User Manual document.

6.1 Connection Setup

A connection to the device can be established via raw TCP/IP or by using a telnet client. The settings

needed to access the ASCII Interface include:

• the current IP address (default is 192.168.1.200).

• the fixed port number 55551.

One way to connect and communicate with the device through the ASCII Interface is by using a

telnet client. In the following steps we will use the multipurpose client PuTTY2 to read the serial

number of an attached MCS2 controller.

1. Download and start PuTTY (www.putty.org)

2. In the tree view to the left select the session category

3. Select telnet as connection type (see figure 6.1a)

4. Fill in the device’s IP address and the correct port (55551)

5. Name and save the session options (optional)

6. A click on open will start the session (see figure 6.1b)

7. You are now ready to communicate with the device

(e.g. to query the serial number).

1Standard Commands for Programmable Instruments (www.ivifoundation.org/scpi)
2Open source SSH and telnet client PuTTY (www.putty.org)

329MCS2 Programmer’s Guide

www.putty.org
www.ivifoundation.org/scpi
www.putty.org

6 ASCII INTERFACE

(a) PuTTY Configuration Window

(b) PuTTY Terminal Window

Figure 6.1: Communicating with the MCS2 using PuTTY

6.1.1 Note On Message Termination

When communicating with the device via raw TCP/IP make sure to use the correct message ter-

mination for commands sent to and answers received from the device. The message termination

characters used by the MCS2 are <CR><LF> (carriage return + line feed).

6.2 SCPI Basics

Initially developed due to the need of a common interface language between computers and in-

struments, SCPI is nowadays a well established open standard to communicate with all kinds of

devices. Due to it’s easy to learn and mostly self-explanatory ASCII syntax it is usable with any

computer language or application environment.

The following sections will give an overview on how to get started using SCPI with the MCS2. More

information on the SCPI specification can be found on the IVI Foundation websites 3.

6.2.1 SCPI Conformance Information

Although being strongly orientated towards the SCPI standard (especially concerning the com-

mand syntax rules) we do not claim to be fully conform. Due to its rich set of functions and

flexibility, the MCS2 does not fit in a predefined instrument class, but uses the well defined SCPI

syntax and communication mechanisms for a convenient operation experience.

3www.ivifoundation.org/specifications/

330MCS2 Programmer’s Guide

www.ivifoundation.org/specifications/

6 ASCII INTERFACE

6.2.2 Command Structure

SCPI differentiates between common and instrument commands. Common commands always

start with an asterisk (*) and only consist of one keyword.

Common Command *IDN?

The behavior of these commands is mostly predefined by the standard and incorporates some

general mechanisms like issuing a reset or reading global status bytes. Section 6.6.1 holds a table

describing the common commands supported by the MCS2.

To access all the different properties and functions the MCS2 provides, instrument commands

are used. These commands are device-dependent and follow a hierarchical tree system approach.

Associated properties are therefore grouped into different subsystems (branches) creating a com-

mand tree like the one below.

[:PROPerty] // "root"

:DEVice // "branch"

:SNUMber // "leaf"

:STATe // "leaf"

:CHANnel# // "branch"

:VELocity // "leaf"

As an example we now want to read the device’s serial number. The assembling of a command

always starts at the root of the tree. To obtain the value of a particular leaf the full path to it

must be specified. This is achieved by traversing the command tree from root (:PROPerty) to

leaf (:SNUMber) and concatenate the different keywords on the way from left to right. As result

we get the full command string:

Instrument Command :PROPerty:DEVice:SNUMber?

Each command has both a long and a short form. Only the exact long or the exact short form

will be accepted with lower- and uppercase letters being ignored (case-insensitive).

The following commands would all be accepted by the MCS2.

Long Form (mixed case) :PROPerty:DEVice:SNUMber?

Long Form (all lower-case) :property:device:snumber?

Short Form (all upper-case) :PROP:DEV:SNUM?

Short Form (all lower-case) :prop:dev:snum?

...

NOTICE
To keep track of long and short command forms, all of the following examples

will use upper case letters for short commands and lower case letters for the

remaining part of the corresponding long form.

A setup containing an MCS2 normally holds a variable number of channels and/or modules. To

address a particular module or channel, the corresponding index has to be added when as-

sembling the command. In general, if a command tree keyword contains a hash symbol (#) , that

331MCS2 Programmer’s Guide

6 ASCII INTERFACE

symbol must be replaced by the desired module or channel index. Thus a :CHANnel# keyword

becomes :CHANnel2 when addressing the channel with index 2.

Many commands take an additional command parameter (e.g. to set a channel’s velocity). Com-

mand and parameter must be separated by at least one space character. Command parameters

can be of type numeric (int32/64) or type string and must be given according to the base unit (e.g.

pm or n°).

The following command needs the channel’s move velocity as a parameter given in pm
s .

Set velocity for channel 0 to 1mms :PROPerty:CHANnel0:VELocity 1000000000

For properties that are (also) readable, the query form of a command is generated by appending

a question mark (?) to the command. However, not all commands have a query form, and some

commands exist only in query form, see subsection 6.2.4 (Queries).

Query velocity for Channel 0 :PROPerty:CHANnel0:VELocity?

Response (in pm
s) 1000000000

6.2.3 Traversing the Command Tree

As stated in the previous section 6.2.2 (Command Structure) commands are created by concate-

nating keywords along the command tree. This section is intended to explain some more rules

and possibilities on how to create proper commands.

• When assembling commands, colons (:) are used to separate the different keywords.

• Square brackets ([]) enclose a keyword that is optional (default) and may be omitted. Thus

a command tree, starting with the root [:PROPerty] may lead to the following commands:

– :PROPerty:DEVice:SNUMber?

– :DEVice:SNUMber?

• Multiple commands may be sent in one message to the device (compound command).

The first command must always be referenced to the root node (e.g. :CHANnel0). Subsequent

commands however, are referenced to the same tree level as the previous command in amessage.

These commands have to be separated by a semicolon (;) to the previous command.

Set channel 0 move mode :CHANnel0:MMODe 1

Set channel 0 velocity :CHANnel0:VELocity 10000

Set channel 0 acceleration :CHANnel0:ACCeleration 0

Set all in one message :CHANnel0:MMODe 1;VELocity 10000;ACCeleration 0

Set channel 0 positioner type :CHANnel0:PTYPe 300

Note that sending a compound command message to the device may complicate error handling

if one of the containing commands fails. It is therefore recommended to send each command as

a single message to ensure a deterministic and stable program sequence.

332MCS2 Programmer’s Guide

6 ASCII INTERFACE

6.2.4 Queries

To read the value of a specific device, module or channel property a query command has to be

sent to the MCS2. Queries are generated by traversing the command tree and appending the final

command with a question mark (?). When the device receives a valid query form of a command, a

response is generated containing the current setting or value associated with the property.

Further note that

• query responses do not include the command header but only the requested value.

• for numeric properties, the result is returned as an int32/64 type (see Property Summary).

• for string properties, the result is returned as string.

• responses to compound query messages are separated by a semicolon (;).
Single query :CHANnel0:PTYPe?

Response 300

Single query :CHANnel0:MMODe?

Response 2

Compound Query :CHANnel0:PTYPe?;MMODe?

Response 300; 2

To check whether a property is readable, writable or both, see section 6.6.3 (Property Command

Tree).

6.3 Basic Programming Examples

This section shows a few examples how communication with the device might look using the short

command forms and omitting the optional (default) :PROPerty command tree keyword. For

more info on long and short command forms, see 6.2.2 (Command Structure). Note that com-

mands are only executed after the device receives the <NL> character, see 6.1.1 (Note OnMessage

Termination).

6.3.1 Get Property

// get number of bus modules from device

>> :DEV:NOMO?

// response

<< 1

333MCS2 Programmer’s Guide

6 ASCII INTERFACE

6.3.2 Set Property

// set move mode to open-loop step mode (4) for channel 0

>> :CHAN0:MMOD 4

6.3.3 Calibrate

// set calibration mode for channel 0 (start direction: forward)

>> :CHAN0:CAL:OPT 0

// start calibration sequence

>> :CAL0

6.3.4 Reference

// set find reference mode for channel 0 (default is 0)

>> :CHAN0:REF:OPT 0

// start referencing sequence

>> :REF0

6.3.5 Move

// set move mode to closed-loop relative (1) for channel 0

>> :CHAN0:MMOD 1

// set move velocity [in pm/s]

>> :CHAN0:VEL 500000000

// disable acceleration control

>> :CHAN0:ACC 0

// start actual movement, value is interpreted as

// relative position (in pm)

>> :MOVE0 500000000

6.3.6 Stop

// send stop command to channel 0

>> :STOP0

334MCS2 Programmer’s Guide

6 ASCII INTERFACE

6.3.7 Movement State

// get current state for channel 0

>> :CHAN0:STAT?

// response holds the state bitmask as int32 value

<< 37

// decoding the value leads us to the following active state bits

// - channel 0 is actively moving (bit 0 is set)

// - channel 0 is calibrating (bit 2 is set)

// - channel 0 has a sensor present (bit 5 is set)

6.3.8 Error Handling

To access information on errors due to either incorrect assembling of command messages or

general handling with the device, the ASCII Interface holds a user accessible error queue.

This queue is implemented as FIFO4 and can be accessed by the :SYSTem:ERRor subsystem.

Errors that occur during run-time can therefore be detected by executing the following queries.

:SYSTem:ERRor:COUNt? Returns the number of errors the queue contains

:SYSTem:ERRor[:NEXT]? Returns the NEXT error and removes it from the queue

(will return 0, "No Error" if empty)

Error codes returned are divided in

• a No Error Code which is equal to zero.

• SCPI error codes which are less than zero, see 6.4.

• and SmarActControl error codes which are greater than zero, see A.1.

A program sequence with error checking might look like the following:

// try to get current state for channel 0

>> :CHAN0:STAT?!

// due to an invalid character in this command (!), there is no response

// by checking the error count

>> :SYST:ERR:COUN?

// we see that there is one error inside the error queue

<< 1

// to get more information we retrieve this error

>> :SYST:ERR:NEXT?

// and get the following response

<< -101,"Invalid character"

4First error In will be the First error Out

335MCS2 Programmer’s Guide

6 ASCII INTERFACE

NOTICE
Note that when working with the error queue, it might already hold errors gener-

ated by previous commands. An incorrect command can even result in multiple

errors being added to the queue. It is therefore good practice to query all possi-

ble errors before sending the next command.

336MCS2 Programmer’s Guide

6 ASCII INTERFACE

6.4 Using Command Groups

Command groups offer the possibility to define an atomic group of commands that is executed

synchronously. In addition, a command group may not only be triggered via software, but alter-

natively via an external trigger. For more general information on Command Groups please refer

to section 2.17.

This section describes how to take advantage of Command Groups when using the ASCII interface.

6.4.1 Command Set

The following commands and queries are used to control a Command Group.

:CGRoup:OPEN <triggerMode> Opens a Command Group using the given trigger mode.

:CGRoup:CLOSe Closes a previously opened Command Group.

:CGRoup:ABORt Aborts a previously opened Command Group.

:CGRoup:FINished? Indicates whether the Command Group is finished.

:CGRoup:VALues? Requests the values that were queried inside a

Command Group.

Note that, when using the ASCII interface, the number of concurrently active Command Groups is

limited to one. Figure 6.2 show the general process for either writing or readingmultiple properties

using a Command Group.

337MCS2 Programmer’s Guide

6 ASCII INTERFACE

Open Command Group

with desired Trigger Mode

>> :CGR:OPEN <trigger mode>

Append Commands

>> :CHAN0:MMOD 1

>> :MOVE0 1000000

>> :CHAN1:MMOD 1

>> :MOVE1 2000000

Close Command Group

>> :CGR:CLOS

Wait For Finished Flag

>> :CGR:FIN?

<< 1

Query Value(s)

>> :CGR:VAL?

<< 1000000; 2000000

Done

Append Queries

>> :CHAN0:POS?

>> :CHAN1:POS?

Close Command Group

>> :CGR:CLOS

Wait For Finished Flag

>> :CGR:FIN?

<< 1

Figure 6.2: Command Group procedure(s)

The CGR:OPEN command is used to activate a Command Group using the given trigger mode.

All of the following commands and queries will be appended to this Command Group. Note that

properties missing the Groupable flag will lead to an error when put into a Command Group. Send-

ing the CGR:CLOS command either starts the Command Group’s execution immediately (trigger

mode direct) or defers the execution until an external event occurs (trigger mode external).

The CGR:FIN query is used to check if execution of all grouped commands has been started or if

the requested values are available (return code 1). It furthermore indicates if a Command Group

has been aborted either by the user or the device itself (return code 2).

For finished Command Groups that contained at least one query, the CGR:VAL query is used to

read the resulting values from the device.

6.4.2 Examples

This section contains some examples to further demonstrate the different use cases of Command

Groups.

338MCS2 Programmer’s Guide

6 ASCII INTERFACE

Synchronized movement using direct trigger

The following sequence uses a Command Group to synchronize the closed-loop movement of two

channels. By using the Direct Trigger mode, the commands execution starts right after closing the

Command Group.

// open command group in direct trigger mode (0)

// (every following command is not executed but put into the group)

>> :CGR:OPEN 0

// set move modes of channel 0 and 1 to closed-loop relative (1)

>> :CHAN0:MMOD 1

>> :CHAN1:MMOD 1

// move channel 0 to +1mm

>> :MOVE0 1000000000

// move channel 1 to +0.5mm

>> :MOVE1 500000000

// close command group

// (execution of grouped commands starts now)

>> :CGR:CLOS

// the command group’s finished value signalizes

// that the command group has been processed

>> :CGR:FIN?

<< 1

Synchronized position query using direct trigger

The following sequence uses a Command Group to synchronize the position sampling of two chan-

nels. By using the Direct Trigger mode, the queries’ execution starts right after closing the Com-

mand Group.

// open command group in direct trigger mode (0)

// (every following query is not executed but put into the group)

>> :CGR:OPEN 0

// query positions of channel 0 and 1

>> :CHAN0:POS?

>> :CHAN1:POS?

// close command group

// (execution of grouped commands starts now)

>> :CGR:CLOS

// the command group’s finished value signalizes

// that the command group has been processed

>> :CGR:FIN?

<< 1

// we can now query the resulting value(s)

>> :CGR:VAL?

<< 1000000000; 500000000

339MCS2 Programmer’s Guide

6 ASCII INTERFACE

Synchronized movement using external trigger

The following sequence uses a Command Group to synchronize the closed-loop movement of

two channels. By using the External Trigger mode, the commands execution is deferred until the

external event occurs. Note that the Input Trigger has to be configured accordingly in advance.

See section 2.20 "Input Trigger" for more information.

// open command group in external trigger mode (1)

// (every following command is not executed but put into the group)

>> :CGR:OPEN 1

// set move modes of channel 0 and 1 to closed-loop relative (1)

>> :CHAN0:MMOD 1

>> :CHAN1:MMOD 1

// move channel 0 to +1mm

>> :MOVE0 1000000000

// move channel 1 to +0.5mm

>> :MOVE1 500000000

// close command group

// (execution of grouped commands is deferred)

>> :CGR:CLOS

// the command group’s finished value signalizes

// that the command group has NOT been processed yet

>> :CGR:FIN?

<< 0

// ...

// process some other commands/queries

// ...

-> external event occurs

// the command group’s finished value signalizes

// that the command group has now been processed

>> :CGR:FIN?

<< 1

6.5 Streaming Trajectories

Trajectory streaming allows a multi DoF manipulator to follow specific trajectories using the MCS2

controller. All participating positioners are moved synchronously along the defined trajectory. For

more general information please refer to section 2.18 "Trajectory Streaming".

This section describes how to take advantage of Trajectory Streaming when using the ASCII inter-

face.

6.5.1 Command Set

The following commands and queries are used to control a trajectory stream:

340MCS2 Programmer’s Guide

6 ASCII INTERFACE

:STReam:OPEN <triggerMode> Opens a stream using the given trigger mode.

:STReam:BFREe? Returns the number of free buffer slots.

:STReam:FRAMe <frameData> Transmits the desired frame.

:STReam:CLOSe Closes a running stream.

:STReam:ABORt Aborts a running stream.

Before starting a stream make sure to configure the properties below as desired:

Stream Base Rate Configures the stream base rate in Hz (See page 262).

Stream External Sync Rate Configures the external synchronization rate in Hz (See page 263).

Stream Options Configures the stream behavior (See page 265).

NOTICE
When using the ASCII interface, the maximum reachable streaming frequency is

reduced, depending on the number of involved channels and the programming

sequence.

To prevent buffer under-/overruns, make sure to always supply enough stream

frames according to the remaining free buffer slots.

341MCS2 Programmer’s Guide

6 ASCII INTERFACE

Figure 6.3 shows the general procedure for a complete streaming sequence.

Open Stream

with desired Trigger Mode

>> :STR:OPEN <triggerMode>

Check the number of free

bu�er slots

>> :STR:BFRE?

<< "number of free slots"

Send frames to device

>> :STR:FRAM <frame 0>

>> :STR:FRAM <frame 1>

>> :STR:FRAM <frame 2>

>> ...

Done

Close Stream

>> :STR:CLOS

All frames

transferred?

Yes

No

Figure 6.3: Streaming sequence

The STR:OPEN command is used to open a stream using the given trigger mode.

By reading the number of available buffer slots using the STR:BFRE query, the number of frames

that can currently be transferred to the device can be calculated. The number of free buffer slots

is given in positions, thus a stream containing two channels would take up two buffer slots. Using

the STR:FRAM command, the device is now provided with the desired positions for each chan-

nel. A frame is assembled using a channel index following the corresponding absolute position,

separated by comma. This mechanism is used until all frames have been sent to the device.

The STR:CLOS command is used to close the stream.

6.5.2 Example

The following example configures and sends a stream to the device containing positions for chan-

nel 0 and 1.

// configure the streaming base rate to 100Hz

>> :DEV:STR:BAS 100

// configure the streaming options to default (0)

>> :DEV:STR:OPT 0

342MCS2 Programmer’s Guide

6 ASCII INTERFACE

// open stream in direct trigger mode (0)

>> :STR:OPEN 0

// check the current buffer level

>> :STR:BFRE?

<< 1024

// We have 1024 position buffer slots available.

// (This effectively results in 1024/numberOfChannels=512 frame slots)

// Now we transmit our frames containing positions for channel 0 and 1.

>> STR:FRAM 0,1000000,1,100000

>> STR:FRAM 0,2000000,1,150000

>> STR:FRAM 0,3000000,1,200000

>> ...

// Streaming starts as soon as enough data has been received by the

// device. Repeat this process until all desired frames have been

// sent to the device.

// If all frames have been transferred, close the stream.

>> :STR:CLOS

// The remaining frames are processed until the stream is completed.

6.6 Command Summary

Section 6.6.1 contains an overview of the supported set of SCPI common commands and their

behavior in context of the MCS2. The following tables in section 6.2 and 6.3 show the command

hierarchy as well as the necessary information to assemble all instrument commands available

through the ASCII Interface.

6.6.1 Common Commands

In general, the ASCII Interface supports all mandatory common commands required by the SCPI

standard. Nevertheless most of them are not needed for controlling the device. Table 6.1 shows

an overview of the implemented common commands and their utilization.

Table 6.1 – Common Commands

Mnemonic Name Description

*CLS Clear Status Command This command clears all status data

structures.

*ESE Standard Event Status Enable Command This command has no effect.

*ESE? Standard Event Status Enable Query This command has no effect.

*ESR Standard Event Status Register Query This command has no effect.

*IDN? Identification Query This command returns information

about the device such as

manufacturer and serial number.

Continued on next page

343MCS2 Programmer’s Guide

6 ASCII INTERFACE

Table 6.1 – Continued from previous page

Mnemonic Name Description

*OPC Operation Complete Command This command has no effect.

*OPC? Operation Complete Query This command has no effect (will

always return 1).

*RST Reset Command Resets the device (reconnect

necessary!).

*SRE Service Request Enable Command This command has no effect.

*SRE? Service Request Enable Query This command has no effect.

*STB? Read Status Byte Query Returns the status byte.

*TST? Self-Test Query This command has no effect (will

always return 0).

*WAI Wait-to-Continue Command This command has no effect.

6.6.2 Movement Commands

Table 6.2 shows the commands that generate or stop movement. For detailed information on a

movement command please follow the corresponding page to the Function Reference chapter.

Table 6.2 –Movement Summary

SCPI Command Tree Type Idx Access Page

:MOVE# I64 Ch W 141

:STOP# - Ch W 143

:CALibrate# - Ch W 137

:REFerence# - Ch W 139

6.6.3 Property Command Tree

Table 6.3 shows the command hierarchy to access all the properties available for a proper device

configuration. For detailed information on a property please follow the corresponding page to the

Property Reference chapter.

Table 6.3 – Property Summary

SCPI Command Tree Type Idx Access Property Page

[:PROPerty]

:DEVice

:NOCHannels I32 Dev R Number of Channels 157

Continued on next page

344MCS2 Programmer’s Guide

6 ASCII INTERFACE

Table 6.3 – Continued from previous page

SCPI Command Tree Type Idx Access Property Page

:NOBModules I32 Dev R Number of Bus Modules 158

:ITYPe I32 Dev R Interface Type 159

:STATe I32 Dev R Device State 160

:SNUMber String Dev R Device Serial Number 161

:NAME String Dev RW Device Name 162

:ESTop

:MODE I32 Dev RW Emergency Stop Mode 163

:NETWork

:DISCover

:MODE I32 Dev RW Network Discover Mode 164

:DHCP

:TIMeout I32 Dev RW Network DHCP Timeout 166

:STReaming

:BASerate I32 Dev RW Stream Base Rate 262

:SYNCrate I32 Dev RW Stream External Sync Rate 263

:OPTions I32 Dev RW Stream Options 265

:LOAD:MAXimum I32 Dev R Stream Load Maximum 266

:HMODule

:LOPTions

[:CURRent] I32 Dev RW Hand Control Module Lock Op-

tions

309

:DEFault I32 Dev RW Hand Control Module Default

Lock Options

311

:TRIGger

:INPut

:MODE I32 Dev RW Device Input Trigger Mode 294

:CONDition I32 Dev RW Device Input Trigger Condition 296

:MODule#

:PSUPply

[:ENABled] I32 Mod RW Power Supply Enabled 168

:TYPE I32 Mod R Module Type 170

:STATe I32 Mod R Module State 171

:NOMChannels I32 Mod R Number of Bus Module Chan-

nels

169

Continued on next page

345MCS2 Programmer’s Guide

6 ASCII INTERFACE

Table 6.3 – Continued from previous page

SCPI Command Tree Type Idx Access Property Page

:TEMPerature I32 Mod R Bus Module Temperature 270

:IOModule

:OPTions I32 Mod RW I/O Module Options 289

:VOLTage I32 Mod RW I/O Module Voltage 291

:AINPut

:RANGe I32 Mod RW I/O Module Analog Input Range 292

:AUXiliary

:DINPut

[:VALue] I32 Mod R Aux Digital Input Value 284

:DOUTput

[:VALue] I32 Mod RW Aux Digital Output Value / Set /

Clear

285

:SET I32 Mod W Aux Digital Output Value / Set /

Clear

285

:CLEar I32 Mod W Aux Digital Output Value / Set /

Clear

285

:AOUTput

[:VALue]# I32 Mod RW Aux Analog Output Value0 /

Value1

287

:CHANnel#

:AMPLifier

[:ENABled] I32 Ch RW Amplifier Enabled 174

:MODE I32 Ch RW Amplifier Mode 176

:PCONtrol

:OPTions I32 Ch RW Positioner Control Options 178

:STARtup:OPTions I32 Ch RW Startup Options 172

:ACTuator

:MODE I32 Ch RW Actuator Mode 180

:CLINput

[:SELect] I32 Ch RW Control Loop Input 182

:SENSor

:SELect I32 Ch RW Sensor Input Select 184

[:VALue] I64 Ch R Control Loop Input Sensor Value 218

:AUXiliary

Continued on next page

346MCS2 Programmer’s Guide

6 ASCII INTERFACE

Table 6.3 – Continued from previous page

SCPI Command Tree Type Idx Access Property Page

[:VALue] I64 Ch R Control Loop Input Aux Value 219

:PTYPe

[:CODE] I32 Ch RW Positioner Type 186

:NAME String Ch R Positioner Type Name 188

:MMODe I32 Ch RW Move Mode 189

:TYPE I32 Ch R Channel Type 191

:STATe I32 Ch R Channel State 192

:POSition

[:CURRent] I64 Ch RW Position 193

:TARGet I64 Ch R Target Position 195

:SCAN I64 Ch R Scan Position 196

:MSHift I32 Ch RW Position Mean Shift 215

:SCAN

:VELocity I64 Ch RW Scan Velocity 197

:HOLDtime I32 Ch RW Hold Time 198

:VELocity I64 Ch RW Move Velocity 200

:ACCeleration I64 Ch RW Move Acceleration 202

:MCLFrequency

[:CURRent] I32 Ch RW Max Closed Loop Frequency 204

:DEFault I32 Ch RW Default Max Closed Loop Fre-

quency

205

:STEP

:FREQuency I32 Ch RW Step Frequency 206

:AMPLitude I32 Ch RW Step Amplitude 207

:FERRor I64 Ch R Following Error 208

:FELimit I64 Ch RW Following Error Limit 209

:BSOPtions I32 Ch RW Broadcast Stop Options 210

:SENSor

:MODE I32 Ch RW Sensor Power Mode 211

:DELay I32 Ch RW Sensor Power Save Delay 213

:SDIRection I32 Ch RW Safe Direction 216

:LSCale

:OFFset I64 Ch RW Logical Scale Offset 222

Continued on next page

347MCS2 Programmer’s Guide

6 ASCII INTERFACE

Table 6.3 – Continued from previous page

SCPI Command Tree Type Idx Access Property Page

:INVersion I32 Ch RW Logical Scale Inversion 223

:RLIMit

:MIN[:CURRent] I64 Ch RW Range Limit Min 225

:MAX[:CURRent] I64 Ch RW Range Limit Max 226

:MIN:DEFault I64 Ch RW Default Range Limit Min 227

:MAX:DEFault I64 Ch RW Default Range Limit Max 228

:CALibration

:OPTions I32 Ch RW Calibration Options 229

:SCORrection

:OPTions I32 Ch RW Signal Correction Options 231

:REFerencing

:OPTions I32 Ch RW Referencing Options 233

:DTRMark I32 Ch R Distance To Reference Mark 235

:DCINverted I32 Ch RW Distance Code Inverted 236

:ERRor I32 Ch R Channel Error 267

:TEMPerature I32 Ch R Channel Temperature 269

:PFReason I32 Ch R Positioner Fault Reason 271

:MOTor:LOAD I32 Ch R Motor Load 273

:TTZVoltage

:THReshold

[:HOLD] I32 Ch RW Target To Zero Voltage Hold

Threshold

220

:AUXiliary

:PTYPe I32 Ch RW Aux Positioner Type 274

:PTName String Ch R Aux Positioner Type Name 276

:ISELect I32 Ch RW Aux Input Select 277

:IOModule

:INPut

:INDex I32 Ch RW Aux I/O Module Input Index 278

[:VALue]# I32 Ch R Aux I/O Module Input0 / Input1

Value

282

:DINVersion I32 Ch RW Aux Direction Inversion 280

:TRIGger

Continued on next page

348MCS2 Programmer’s Guide

6 ASCII INTERFACE

Table 6.3 – Continued from previous page

SCPI Command Tree Type Idx Access Property Page

:OUTPut

:MODE I32 Ch RW Channel Output Trigger Mode 297

:POLarity I32 Ch RW Channel Output Trigger Polarity 299

:PWIDth I32 Ch RW Channel Output Trigger Pulse

Width

300

:PCOMpare

:THReshold

[:STARt] I32 Ch RW Channel Position Compare Start

Threshold

301

:INCRement I32 Ch RW Channel Position Compare In-

crement

302

:DIRection I32 Ch RW Channel Position Compare Di-

rection

303

:LMIN I64 Ch RW Channel Position Compare Limit

Min

305

:LMAX I64 Ch RW Channel Position Compare Limit

Max

307

:TUNing

:MTYPe I32 Ch R(W) Positioner Movement Type 237

:CUSTom I32 Ch R(W) Positioner Is Custom Type 239

:BASE

:UNIT I32 Ch R(W) Positioner Base Unit 240

:RESolution I32 Ch R(W) Positioner Base Resolution 242

:HTYPe I32 Ch R(W) Positioner Sensor Head Type 244

:RTYPe I32 Ch R(W) Positioner Reference Type 245

:GAIN

:P I32 Ch R(W) Positioner P Gain 247

:I I32 Ch R(W) Positioner I Gain 248

:D I32 Ch R(W) Positioner D Gain 249

:SHIFt I32 Ch R(W) Positioner PID Shift 250

:AWINdup I32 Ch R(W) Positioner Anti Windup 252

:SAVE I32 Ch W Save Positioner Type 260

:WPRotection I32 Ch RW Positioner Write Protection 261

:ESDetection

Continued on next page

349MCS2 Programmer’s Guide

6 ASCII INTERFACE

Table 6.3 – Continued from previous page

SCPI Command Tree Type Idx Access Property Page

:DISTance I32 Ch R(W) Positioner ESD Distance Thresh-

old

254

:COUNter I32 Ch R(W) Positioner ESD Counter Thresh-

old

256

:THReshold

:TREached I32 Ch R(W) Positioner Target Reached

Threshold

257

:THOLd I32 Ch R(W) Positioner Target Hold Thresh-

old

258

6.7 SCPI Error Codes

Table 6.4 – SCPI Error Codes

Code Definition / Description

0 SCPI_ERROR_NO_ERROR

No error occurred. Corresponds to an acknowledge.

-101 SCPI_ERROR_INVALID_CHARACTER

The command message contained an invalid character.

-103 SCPI_ERROR_INVALID_SEPARATOR

The command message contained an invalid separator.

-104 SCPI_ERROR_DATA_TYPE_ERROR

The command message contained an illegal data type.

-108 SCPI_ERROR_PARAMETER_NOT_ALLOWED

The command message contained illegal parameter.

-109 SCPI_ERROR_MISSING_PARAMETER

The command message is missing a parameter.

-113 SCPI_ERROR_UNDEFINED_HEADER

The command message does not exist for this device.

-151 SCPI_ERROR_INVALID_STRING_DATA

The given string data is invalid.

-350 SCPI_ERROR_QUEUE_OVERFLOW

An internal error queue overflow occurred.

-363 SCPI_ERROR_INPUT_BUFFER_OVERRUN

An input buffer overrun occurred.

350MCS2 Programmer’s Guide

A CODE DEFINITION REFERENCE

A.1 Error Codes

Table A.1 – Error Codes

Code C-Definition / Description

0x0000 SA_CTL_ERROR_NONE

No error occurred. Corresponds to an acknowledge.

0x0001 SA_CTL_ERROR_UNKNOWN_COMMAND

An unknown command opcode was received and the packet was dropped.

0x0002 SA_CTL_ERROR_INVALID_PACKET_SIZE

Indicates that the size field of a packet does not match the packet structure.

0x0004 SA_CTL_ERROR_TIMEOUT

A timeout occurred while receiving a complete packet.

0x0005 SA_CTL_ERROR_INVALID_PROTOCOL

A packet was received that does not comply to a supported protocol.

0x000c SA_CTL_ERROR_BUFFER_UNDERFLOW

The targeted buffer is empty.

0x000d SA_CTL_ERROR_BUFFER_OVERFLOW

The targeted buffer is filled and has no more space for further data.

0x000e SA_CTL_ERROR_INVALID_FRAME_SIZE

The frame size of the packet is invalid.

0x0010 SA_CTL_ERROR_INVALID_PACKET

A packet with an inconsistent structure was received.

0x0012 SA_CTL_ERROR_INVALID_KEY

The given property key could not be resolved.

0x0013 SA_CTL_ERROR_INVALID_PARAMETER

The passed parameter is not in the valid range.

0x0016 SA_CTL_ERROR_INVALID_DATA_TYPE

Indicates that the data type of a parameter is invalid.

0x0017 SA_CTL_ERROR_INVALID_DATA

The command could not be processed due to invalid data. (E.g. a calibration routine

finished but could not generate valid data.)

Continued on next page

351MCS2 Programmer’s Guide

A CODE DEFINITION REFERENCE

Table A.1 – Continued from previous page

Code C-Definition / Description

0x0018 SA_CTL_ERROR_HANDLE_LIMIT_REACHED

The command could not be processed because all available handles are currently in

use.

0x0019 SA_CTL_ERROR_ABORTED

The command has been aborted.

0x0020 SA_CTL_ERROR_INVALID_DEVICE_INDEX

An invalid device index has been passed.

0x0021 SA_CTL_ERROR_INVALID_MODULE_INDEX

An invalid module index has been passed.

0x0022 SA_CTL_ERROR_INVALID_CHANNEL_INDEX

An invalid channel index has been passed.

0x0023 SA_CTL_ERROR_PERMISSION_DENIED

The request cannot be processed due to an access violation.

0x0024 SA_CTL_ERROR_COMMAND_NOT_GROUPABLE

The given command cannot be part of a command group.

0x0025 SA_CTL_ERROR_MOVEMENT_LOCKED

The given command cannot be processed due to movements being locked.

0x0026 SA_CTL_ERROR_SYNC_FAILED

A synchronization requirement could not be met. (E.g. the trajectory streaming was

aborted due to a stream overload.)

0x0027 SA_CTL_ERROR_INVALID_ARRAY_SIZE

The number of array elements is invalid for a given write array property command.

0x0028 SA_CTL_ERROR_OVERRANGE

An over-range condition occurred.

0x0029 SA_CTL_ERROR_INVALID_CONFIGURATION

The operation could not be started due to an invalid configuration of the component.

(E.g. some other properties are not configured properly for the configured operation

mode.)

0x0100 SA_CTL_ERROR_NO_HM_PRESENT

The command could not be processed because no Hand-Control-Module is present.

0x0101 SA_CTL_ERROR_NO_IOM_PRESENT

The command could not be processed because no I/O-Module is present.

0x0102 SA_CTL_ERROR_NO_SM_PRESENT

The command could not be processed because no Sensor-Module is present.

0x0103 SA_CTL_ERROR_NO_SENSOR_PRESENT

The command could not be processed because no sensor is present.

0x0104 SA_CTL_ERROR_SENSOR_DISABLED

The command could not be processed because the sensor is disabled.

Continued on next page

352MCS2 Programmer’s Guide

A CODE DEFINITION REFERENCE

Table A.1 – Continued from previous page

Code C-Definition / Description

0x0105 SA_CTL_ERROR_POWER_SUPPLY_DISABLED

The command could not be processed because the power supply is disabled.

0x0106 SA_CTL_ERROR_AMPLIFIER_DISABLED

The command could not be processed because the amplifier is disabled.

0x0107 SA_CTL_ERROR_INVALID_SENSOR_MODE

The command could not be processed with the current sensor mode setting. (E.g.

the power save mode is not allowed while trajectory streaming.)

0x0108 SA_CTL_ERROR_INVALID_ACTUATOR_MODE

The command could not be processed with the current Actuator Mode setting.

0x0109 SA_CTL_ERROR_INVALID_INPUT_TRIG_MODE

The command could not be processed with the current Device Input Trigger Mode

setting.

0x010a SA_CTL_ERROR_INVALID_CONTROL_OPTIONS

The command could not be processed with the current control options setting.

0x010b SA_CTL_ERROR_INVALID_REFERENCE_TYPE

The command could not be processed with the current reference type of the posi-

tioner.

0x010c SA_CTL_ERROR_INVALID_ADJUSTMENT_STATE

The command could not be processed with the current adjustment state.

0x010e SA_CTL_ERROR_NO_FULL_ACCESS

The command could not be processed because the MCS2 has not full access connec-

tion to a connected Picoscale sensor.

0x010f SA_CTL_ERROR_ADJUSTMENT_FAILED

An adjustment sequence failed.

0x0110 SA_CTL_ERROR_MOVEMENT_OVERRIDDEN

A software commands a movement which is then interrupted by the Hand Control

Module before it finished or vice versa.

0x0111 SA_CTL_ERROR_NOT_CALIBRATED

The command could not be processed because the channel is not calibrated. See

section 2.7.1 "Calibrating" for more information.

0x0112 SA_CTL_ERROR_NOT_REFERENCED

The command could not be processed because the channel is not referenced.

0x0113 SA_CTL_ERROR_NOT_ADJUSTED

The command could not be processed because the channel is not adjusted.

0x0114 SA_CTL_ERROR_SENSOR_TYPE_NOT_SUPPORTED

The command could not be processed because the sensor type of the configured

positioner is not supported from the hardware (e.g. from the sensor module).

Continued on next page

353MCS2 Programmer’s Guide

A CODE DEFINITION REFERENCE

Table A.1 – Continued from previous page

Code C-Definition / Description

0x0115 SA_CTL_ERROR_CONTROL_LOOP_INPUT_DISABLED

The command could not be processed because the control-loop input is disabled.

(See Control Loop Input property.)

0x0116 SA_CTL_ERROR_INVALID_CONTROL_LOOP_INPUT

The command could not be processed because the control-loop input is invalid for

the command. (E.g. the calibration and referencing movements cannot be started

when the control-loop input is configured to ‘aux in‘.)

0x0117 SA_CTL_ERROR_UNEXPECTED_SENSOR_DATA

The calibration routine could not be processed due to unexpected data from the

position sensor.

0x0118 SA_CTL_ERROR_NOT_PHASED

The command could not be processed because the channel is not phased. See sec-

tion 2.22 "Phasing of Magnetic Driven Positioners" for more information.

0x0119 SA_CTL_ERROR_POSITIONER_FAULT

The command could not be processed because the channel detected a positioner

fault.

0x011b SA_CTL_ERROR_POSITIONER_TYPE_NOT_SUPPORTED

The command could not be processed because the connected positioner type is not

supported by the channel. Contact SmarAct to get a firmware update for your con-

troller.

0x011c SA_CTL_ERROR_POSITIONER_TYPE_NOT_IDENTIFIED

The command could not be processed because the type of the connected positioner

could not be identified.

0x011e SA_CTL_ERROR_POSITIONER_TYPE_NOT_WRITEABLE

The positioner type can not be set manually but is automatically configured by the

positioner ID system. See section 2.6 "Positioner Types" for more information.

0x0121 SA_CTL_ERROR_INVALID_ACTUATOR_TYPE

The command could not be processed with the current actuator type. (E.g. the tra-

jectory streaming is not supported for dual-piezo hybrid positioners.)

0x0150 SA_CTL_ERROR_BUSY_MOVING

The command could not be processed because the channel is currently busy per-

forming a movement command. (E.g. disabling the velocity control while moving is

not permitted.)

0x0151 SA_CTL_ERROR_BUSY_CALIBRATING

The command could not be processed because the channel is currently busy per-

forming a calibration sequence.

0x0152 SA_CTL_ERROR_BUSY_REFERENCING

The command could not be processed because the channel is currently busy per-

forming a referencing sequence.

Continued on next page

354MCS2 Programmer’s Guide

A CODE DEFINITION REFERENCE

Table A.1 – Continued from previous page

Code C-Definition / Description

0x0153 SA_CTL_ERROR_BUSY_ADJUSTING

The command could not be processed because the channel is currently busy per-

forming an adjustment sequence.

0x0200 SA_CTL_ERROR_END_STOP_REACHED

An endstop was detected.

0x0201 SA_CTL_ERROR_FOLLOWING_ERR_LIMIT

The following error exceeded the configured limit.

0x0202 SA_CTL_ERROR_RANGE_LIMIT_REACHED

A configured position limit was hit.

0x0203 SA_CTL_ERROR_POSITIONER_OVERLOAD

The command could not be processed because the channel detected an overload

condition of the positioner. See section 2.9.1 "Movement Monitoring" for more in-

formation.

0x0300 SA_CTL_ERROR_INVALID_STREAM_HANDLE

The given stream handle is invalid.

0x0301 SA_CTL_ERROR_INVALID_STREAM_CONFIGURATION

The configured streaming parameters are not supported by all modules.

0x0302 SA_CTL_ERROR_INSUFFICIENT_FRAMES

This error is generated if the trajectory streaming was started without providing the

minimum amount of frames.

(A trajectory stream must consist of at least two frames.)

0x0303 SA_CTL_ERROR_BUSY_STREAMING

The command could not be processed because the channel is currently participating

in a trajectory stream.

0x0400 SA_CTL_ERROR_HM_INVALID_SLOT_INDEX

An invalid slot index has been passed to the hand control module.

0x0401 SA_CTL_ERROR_HM_INVALID_CHANNEL_INDEX

An invalid channel index has been passed to the hand control module.

0x0402 SA_CTL_ERROR_HM_INVALID_GROUP_INDEX

An invalid group index has been passed to the hand control module.

0x0403 SA_CTL_ERROR_HM_INVALID_CH_GRP_INDEX

An invalid channel group index has been passed to the hand control module.

0x0500 SA_CTL_ERROR_INTERNAL_COMMUNICATION

An internal communication error occurred. This error usually indicates a hardware

malfunction.

0x7ffd SA_CTL_ERROR_FEATURE_NOT_SUPPORTED

Indicates that a requested feature is not available on the connected device.

Continued on next page

355MCS2 Programmer’s Guide

A CODE DEFINITION REFERENCE

Table A.1 – Continued from previous page

Code C-Definition / Description

0x7ffe SA_CTL_ERROR_FEATURE_NOT_IMPLEMENTED

Indicates that a feature is not yet implemented. The device may have to be update

to a newer version.

0xf000 SA_CTL_ERROR_DEVICE_LIMIT_REACHED

The maximum number of devices has been opened.

0xf001 SA_CTL_ERROR_INVALID_LOCATOR

An invalid locator string has been passed.

0xf002 SA_CTL_ERROR_INITIALIZATION_FAILED

Initialization of the desired device failed.

0xf003 SA_CTL_ERROR_NOT_INITIALIZED

The device has not been initialized yet.

0xf004 SA_CTL_ERROR_COMMUNICATION_FAILED

Communication with the device failed.

0xf006 SA_CTL_ERROR_INVALID_QUERYBUFFER_SIZE

The provided array size does not meet the required size.

0xf007 SA_CTL_ERROR_INVALID_DEVICE_HANDLE

An invalid device handle has been passed.

0xf008 SA_CTL_ERROR_INVALID_TRANSMIT_HANDLE

An invalid transmit handle has been passed.

0xf00f SA_CTL_ERROR_UNEXPECTED_PACKET_RECEIVED

An unexpected packet has been received.

0xf010 SA_CTL_ERROR_CANCELED

The function call has been canceled.

0xf013 SA_CTL_ERROR_DRIVER_FAILED

The device could not be found due to a driver failure.

0xf016 SA_CTL_ERROR_BUFFER_LIMIT_REACHED

The limit of available buffers has been reached.

0xf017 SA_CTL_ERROR_INVALID_PROTOCOL_VERSION

A protocol version mismatch has been detected.

0xf018 SA_CTL_ERROR_DEVICE_RESET_FAILED

The device software reset failed.

0xf019 SA_CTL_ERROR_BUFFER_EMPTY

Action is not allowed with empty buffers (e.g. empty command group buffer).

0xf01a SA_CTL_ERROR_DEVICE_NOT_FOUND

The device specified in the locator could not be found.

0xf01b SA_CTL_ERROR_THREAD_LIMIT_REACHED

The maximum number of simultaneous calls for this function was reached.

Continued on next page

356MCS2 Programmer’s Guide

A CODE DEFINITION REFERENCE

Table A.1 – Continued from previous page

Code C-Definition / Description

0xf01c SA_CTL_ERROR_NO_APPLICATION

The device specified in the locator is not in the application state.

357MCS2 Programmer’s Guide

Sales partner / Contacts

Germany

SmarAct GmbH

Schuette-Lanz-Strasse 9

26135 Oldenburg

Germany

T: +49 441 - 800 879 0

Email: info-de@smaract.com

www.smaract.com

France

SmarAct GmbH

Schuette-Lanz-Strasse 9

26135 Oldenburg

Germany

T: +49 441 - 800 879 956

Email: info-fr@smaract.com

www.smaract.com

USA

SmarAct Inc.

2140 Shattuck Ave. Suite 1103

Berkeley, CA 94704

United States of America

T: +1 415 - 766 9006

Email: info-us@smaract.com

www.smaract.com

China

Dynasense Photonics

6 Taiping Street

Xi Cheng District,

Beijing, China

T: +86 10 - 835 038 53

Email: info@dyna-sense.com

www.dyna-sense.com

Natsu Precision Tech

Room 515, Floor 5, Building 7,

No.18 East Qinghe Anning

Zhuang Road,

Haidian District

Beijing, China

T: +86 18 - 616 715 058

Email: chenye@nano-stage.com

www.nano-stage.com

Shanghai Kingway Optech Co.Ltd

Room 1212, T1 Building

Zhonggeng Global Creative Center

Lane 166, Yuhong Road

Minhang District

Shanghai, China

Tel: +86 21 - 548 469 66

Email: sales@kingway-optech.com

www.kingway-optech.com

Japan

Physix Technology Inc.

Ichikawa-Business-Plaza

4-2-5 Minami-yawata,

Ichikawa-shi

272-0023 Chiba

Japan

T/F: +81 47 - 370 86 00

Email: info-jp@smaract.com

www.physix-tech.com

South Korea

SEUM Tronics

801, 1, Gasan digital 1-ro

Geumcheon-gu

Seoul, 08594,

Korea

T: +82 2 - 868 10 02

Email: info-kr@smaract.com

www.seumtronics.com

Israel

Trico Israel Ltd.

P.O.Box 6172

46150 Herzeliya

Israel

T: +972 9 - 950 60 74

Email: info-il@smaract.com

www.trico.co.il

358MCS2 Programmer’s Guide

	1 Introduction
	1.1 Terminologies

	2 General Concepts
	2.1 Connecting and Disconnecting
	2.1.1 Locators for Device Identification
	2.1.2 Finding Devices
	2.1.3 Device Enumeration Options
	2.1.4 Network Interface Configuration

	2.2 Properties
	2.3 Accessing Properties
	2.3.1 Synchronous Access
	2.3.2 Asynchronous Access
	2.3.3 High-Throughput Asynchronous Access
	2.3.4 Call-and-Forget Mechanism
	2.3.5 Request Ready Notification

	2.4 Event Notifications
	2.5 Module Overview
	2.5.1 USB Interface
	2.5.2 Ethernet Interface
	2.5.3 Stick-Slip Piezo Driver
	2.5.4 Magnetic Driver

	2.6 Positioner Types
	2.6.1 Manual Positioner Type Configuration
	2.6.2 Automatic Positioner Type Configuration
	2.6.3 Custom Positioner Types

	2.7 Moving Positioners
	2.7.1 Calibrating
	2.7.2 Referencing
	2.7.3 Open-Loop Movements
	2.7.4 Closed-Loop Movements
	2.7.5 Stopping Movements
	2.7.6 Overwriting Movement Commands
	2.7.7 Movement Feedback

	2.8 Defining Positions
	2.8.1 Reference Marks
	2.8.2 Positioners With Single Reference Marks
	2.8.3 Positioners With Multiple Reference Marks
	2.8.4 Positioners With Endstop Reference
	2.8.5 Shifting the Measuring Scale

	2.9 Device Monitoring
	2.9.1 Movement Monitoring
	2.9.2 Magnetic Driver Overload Protection
	2.9.3 Hardware Monitoring

	2.10 State Flags
	2.10.1 Device State Flags
	2.10.2 Module State Flags
	2.10.3 Channel State Flags

	2.11 Sensor Power Modes
	2.12 PicoScale Sensor Module
	2.13 Endstop Detection
	2.14 Following Error Detection
	2.15 Software Range Limit
	2.16 Stop Broadcasting
	2.16.1 Stop Broadcast Configuration

	2.17 Command Groups
	2.17.1 Command Groups vs. Output Buffer

	2.18 Trajectory Streaming
	2.18.1 General Streaming Concept
	2.18.2 Basic Approach
	2.18.3 Options
	2.18.4 Trigger Modes
	2.18.5 Stream Events
	2.18.6 Maximum Stream Rates

	2.19 Auxiliary Inputs and Outputs
	2.19.1 Digital Device Input
	2.19.2 Fast Digital Outputs
	2.19.3 General Purpose Digital Inputs/Outputs
	2.19.4 Fast Analog Inputs
	2.19.5 Using Analog Inputs as Control-Loop Feedback
	2.19.6 Analog Outputs

	2.20 Input Trigger
	2.20.1 Disabled Mode
	2.20.2 Emergency Stop Mode
	2.20.3 Stream Sync Mode
	2.20.4 Command Group Sync Mode
	2.20.5 Event Trigger Mode

	2.21 Output Trigger
	2.21.1 Constant Mode
	2.21.2 Position Compare Mode
	2.21.3 Target Reached Mode
	2.21.4 Actively Moving Mode

	2.22 Phasing of Magnetic Driven Positioners
	2.23 Feature Permissions

	3 Function Reference
	3.1 Function Summary
	3.2 Detailed Function Description
	3.2.1 SA_CTL_GetFullVersionString
	3.2.2 SA_CTL_GetResultInfo
	3.2.3 SA_CTL_GetEventInfo
	3.2.4 SA_CTL_FindDevices
	3.2.5 SA_CTL_Open
	3.2.6 SA_CTL_Close
	3.2.7 SA_CTL_Cancel
	3.2.8 SA_CTL_GetProperty_i32
	3.2.9 SA_CTL_SetProperty_i32
	3.2.10 SA_CTL_SetPropertyArray_i32
	3.2.11 SA_CTL_GetProperty_i64
	3.2.12 SA_CTL_SetProperty_i64
	3.2.13 SA_CTL_SetPropertyArray_i64
	3.2.14 SA_CTL_GetProperty_s
	3.2.15 SA_CTL_SetProperty_s
	3.2.16 SA_CTL_RequestReadProperty
	3.2.17 SA_CTL_ReadProperty_i32
	3.2.18 SA_CTL_ReadProperty_i64
	3.2.19 SA_CTL_ReadProperty_s
	3.2.20 SA_CTL_RequestWriteProperty_i32
	3.2.21 SA_CTL_RequestWriteProperty_i64
	3.2.22 SA_CTL_RequestWriteProperty_s
	3.2.23 SA_CTL_RequestWritePropertyArray_i32
	3.2.24 SA_CTL_RequestWritePropertyArray_i64
	3.2.25 SA_CTL_WaitForWrite
	3.2.26 SA_CTL_CancelRequest
	3.2.27 SA_CTL_CreateOutputBuffer
	3.2.28 SA_CTL_FlushOutputBuffer
	3.2.29 SA_CTL_CancelOutputBuffer
	3.2.30 SA_CTL_OpenCommandGroup
	3.2.31 SA_CTL_CloseCommandGroup
	3.2.32 SA_CTL_CancelCommandGroup
	3.2.33 SA_CTL_WaitForEvent
	3.2.34 SA_CTL_Calibrate
	3.2.35 SA_CTL_Reference
	3.2.36 SA_CTL_Move
	3.2.37 SA_CTL_Stop
	3.2.38 SA_CTL_OpenStream
	3.2.39 SA_CTL_StreamFrame
	3.2.40 SA_CTL_CloseStream
	3.2.41 SA_CTL_AbortStream

	4 Property Reference
	4.1 Property Introduction
	4.2 Property Summary
	4.3 Device Properties
	4.3.1 Number of Channels
	4.3.2 Number of Bus Modules
	4.3.3 Interface Type
	4.3.4 Device State
	4.3.5 Device Serial Number
	4.3.6 Device Name
	4.3.7 Emergency Stop Mode
	4.3.8 Network Discover Mode
	4.3.9 Network DHCP Timeout

	4.4 Module Properties
	4.4.1 Power Supply Enabled
	4.4.2 Number of Bus Module Channels
	4.4.3 Module Type
	4.4.4 Module State

	4.5 Positioner Properties
	4.5.1 Startup Options
	4.5.2 Amplifier Enabled
	4.5.3 Amplifier Mode
	4.5.4 Positioner Control Options
	4.5.5 Actuator Mode
	4.5.6 Control Loop Input
	4.5.7 Sensor Input Select
	4.5.8 Positioner Type
	4.5.9 Positioner Type Name
	4.5.10 Move Mode
	4.5.11 Channel Type
	4.5.12 Channel State
	4.5.13 Position
	4.5.14 Target Position
	4.5.15 Scan Position
	4.5.16 Scan Velocity
	4.5.17 Hold Time
	4.5.18 Move Velocity
	4.5.19 Move Acceleration
	4.5.20 Max Closed Loop Frequency
	4.5.21 Default Max Closed Loop Frequency
	4.5.22 Step Frequency
	4.5.23 Step Amplitude
	4.5.24 Following Error
	4.5.25 Following Error Limit
	4.5.26 Broadcast Stop Options
	4.5.27 Sensor Power Mode
	4.5.28 Sensor Power Save Delay
	4.5.29 Position Mean Shift
	4.5.30 Safe Direction
	4.5.31 Control Loop Input Sensor Value
	4.5.32 Control Loop Input Aux Value
	4.5.33 Target To Zero Voltage Hold Threshold

	4.6 Scale Properties
	4.6.1 Logical Scale Offset
	4.6.2 Logical Scale Inversion
	4.6.3 Range Limit Min
	4.6.4 Range Limit Max
	4.6.5 Default Range Limit Min
	4.6.6 Default Range Limit Max

	4.7 Calibration Properties
	4.7.1 Calibration Options
	4.7.2 Signal Correction Options

	4.8 Referencing Properties
	4.8.1 Referencing Options
	4.8.2 Distance To Reference Mark
	4.8.3 Distance Code Inverted

	4.9 Tuning and Customizing Properties
	4.9.1 Positioner Movement Type
	4.9.2 Positioner Is Custom Type
	4.9.3 Positioner Base Unit
	4.9.4 Positioner Base Resolution
	4.9.5 Positioner Sensor Head Type
	4.9.6 Positioner Reference Type
	4.9.7 Positioner P Gain
	4.9.8 Positioner I Gain
	4.9.9 Positioner D Gain
	4.9.10 Positioner PID Shift
	4.9.11 Positioner Anti Windup
	4.9.12 Positioner ESD Distance Threshold
	4.9.13 Positioner ESD Counter Threshold
	4.9.14 Positioner Target Reached Threshold
	4.9.15 Positioner Target Hold Threshold
	4.9.16 Save Positioner Type
	4.9.17 Positioner Write Protection

	4.10 Streaming Properties
	4.10.1 Stream Base Rate
	4.10.2 Stream External Sync Rate
	4.10.3 Stream Options
	4.10.4 Stream Load Maximum

	4.11 Diagnostic Properties
	4.11.1 Channel Error
	4.11.2 Channel Temperature
	4.11.3 Bus Module Temperature
	4.11.4 Positioner Fault Reason
	4.11.5 Motor Load

	4.12 Auxiliary Properties
	4.12.1 Aux Positioner Type
	4.12.2 Aux Positioner Type Name
	4.12.3 Aux Input Select
	4.12.4 Aux I/O Module Input Index
	4.12.5 Aux Direction Inversion
	4.12.6 Aux I/O Module Input0 / Input1 Value
	4.12.7 Aux Digital Input Value
	4.12.8 Aux Digital Output Value / Set / Clear
	4.12.9 Aux Analog Output Value0 / Value1

	4.13 I/O Module Properties
	4.13.1 I/O Module Options
	4.13.2 I/O Module Voltage
	4.13.3 I/O Module Analog Input Range

	4.14 Input Trigger Properties
	4.14.1 Device Input Trigger Mode
	4.14.2 Device Input Trigger Condition

	4.15 Output Trigger Properties
	4.15.1 Channel Output Trigger Mode
	4.15.2 Channel Output Trigger Polarity
	4.15.3 Channel Output Trigger Pulse Width
	4.15.4 Channel Position Compare Start Threshold
	4.15.5 Channel Position Compare Increment
	4.15.6 Channel Position Compare Direction
	4.15.7 Channel Position Compare Limit Min
	4.15.8 Channel Position Compare Limit Max

	4.16 Hand Control Module Properties
	4.16.1 Hand Control Module Lock Options
	4.16.2 Hand Control Module Default Lock Options

	4.17 API Properties
	4.17.1 Event Notification Options
	4.17.2 Auto Reconnect

	5 Event Reference
	5.1 Event Summary
	5.2 Detailed Event Description
	5.2.1 None
	5.2.2 Movement Finished
	5.2.3 Holding Aborted
	5.2.4 Positioner Type Changed
	5.2.5 Phasing Finished
	5.2.6 Sensor State Changed
	5.2.7 Reference Found
	5.2.8 Following Error Limit
	5.2.9 Sensor Module State Changed
	5.2.10 Over Temperature
	5.2.11 Power Supply Overload
	5.2.12 Power Supply Failure
	5.2.13 Fan Failure State Changed
	5.2.14 Adjustment Finished
	5.2.15 Adjustment State Changed
	5.2.16 Adjustment Update
	5.2.17 Stream Finished
	5.2.18 Stream Ready
	5.2.19 Stream Triggered
	5.2.20 Command Group Triggered
	5.2.21 Hand Control Module State Changed
	5.2.22 Emergency Stop Triggered
	5.2.23 External Input Triggered
	5.2.24 Request Ready
	5.2.25 Connection Lost

	6 ASCII Interface
	6.1 Connection Setup
	6.1.1 Note On Message Termination

	6.2 SCPI Basics
	6.2.1 SCPI Conformance Information
	6.2.2 Command Structure
	6.2.3 Traversing the Command Tree
	6.2.4 Queries

	6.3 Basic Programming Examples
	6.3.1 Get Property
	6.3.2 Set Property
	6.3.3 Calibrate
	6.3.4 Reference
	6.3.5 Move
	6.3.6 Stop
	6.3.7 Movement State
	6.3.8 Error Handling

	6.4 Using Command Groups
	6.4.1 Command Set
	6.4.2 Examples

	6.5 Streaming Trajectories
	6.5.1 Command Set
	6.5.2 Example

	6.6 Command Summary
	6.6.1 Common Commands
	6.6.2 Movement Commands
	6.6.3 Property Command Tree

	6.7 SCPI Error Codes

	A Code Definition Reference
	A.1 Error Codes

