MCS2

PROGRAMMER’'S GUIDE

PN

Group 1 Group 2 J
ch.A(D) Stopped | Coaents

137 Iner. u;ni:: +

el

o TR e @)
+

Ch. B (2) Maving

sS1p.
+12 650 526 940 | amp
H m* u" n* | Frq.

Ch.C(3) Stopped

5
No sensor present

S SmarAct

www.smaract.com

S)SmarAct

Copyright © 2019 SmarAct GmbH
Specifications are subject to change without notice. All rights reserved. Reproduction of images,
tables or diagrams prohibited.

The information given in this document was carefully checked by our team and is constantly up-
dated. Nevertheless, it is not possible to fully exclude the presence of errors. In order to always
get the latest information, please contact our technical sales team.

SmarAct GmbH, Schuette-Lanz-Strasse 9, D-26135 Oldenburg
Phone: +49 (0) 441 - 800879-0, Telefax: +49 (0) 441 - 800879-21
Internet: www.smaract.com, E-Mail: info@smaract.com

Document Version: 1.1.0

MCS2 Programmer’s Guide n _

TABLE OF CONTENTS

T INErOAUCION ... 10
1T TEIMINOIOZIES ittt sttt e b s bbbttt e st e bt s b e s be st et et eneeneenes 10
b L= 1T o T I o T4 =T o1 TP 12
2.1 Connecting and DiSCONNECLINGcocuiiirterereetee ettt sttt sttt eat et sbeesbesbeease b 12
2.1.1 Locators for Device IdentifiCation.......ccceeveriererieiieinrerereeeeeeeee e 12
2.1.2 FINAING DBVICES .ottt sttt sttt et sttt e e ebe s 13
2.1.3 Device ENUMEration OPLIONS ..ccceeviieiieriieieeeeneente sttt s s s 14
2.1.4 Network Interface ConfigUration........cocecevererenieiieiineresereee e 15

A S (o] o 1=] o U =TT P PO 16
2.3 ACCESSING PrOPEITIESeeiiitieietisieet ettt sttt ettt ettt et e st st e e sbesbe e be s bt et e sbesaeesesbeemeenbens 17
2.3.7 SYNCNIONOUS ACCESS...cuiiiiiieieriteienie ettt et sitete st st etesbesateeesbesatenbesbeensenbesanensenns 17
2.3.2 ASYNCNIONOUS ACCESS....ciuiriiriiriiieieieiteiesieste st stete et be st sbesaeste st esessesbesbessensensenseneenens 18
2.3.3 High-Throughput ASYNCAroNOUS ACCESS.......cveruieriiniineeienieetenie ettt 20
2.3.4 Call-and-Forget MeChaniSMccivieieriiiieere et s 22
2.3.5 Request Ready NOtIfiCation ...cccvivieieiririreseseeeeeesese et 23

2.4 EVeNt NOIfICAtIONS ..c.coveiriiiieiiciiicec e 24
2.5 MOAUIE OVEIVIEWouiiiiiiiiiiiiiiictrte sttt bbbt 25
2.5.T USB INTEITACE c..itiiiieieee ettt 25
2.5.2 Ethernet INTErfate ..ottt sttt 26
2.5.3 StICK-SIIP PI€ZO DIIVEI .c..iruieieiiriieienieeteniesttetesie sttt sttt et sbe s ebesaeensesbesanensens 26
2.5 4 MaAGNELIC DIIVEL .ottt sttt sttt st bbbt e e b saee e e 26

2.6 POSITIONEE TYPES ittt ettt ettt ettt et e st e bt e bt e bt e s bt e s bt e s bt e satesaeesabeenbeeabee bt esseenseenneas 27
2.6.1 Manual Positioner Type Configurationc.ccoeveeeererenerenenieenesesresesresee e 28
2.6.2 Automatic Positioner Type Configurationccceceeivienenenenieiineneseseseseeneeeneens 28
2.6.3 CUSLOM POSILIONEE TYPES.ciiiiiiiiieiiieieeteeriee ettt sbe e esbessbeesbeesbaesaaesraesasesasesnne 28

2.7 MOVING POSITIONEIS ...ttt ettt st s e st esae e st st e et e e be e b e sbeesbeesnees 29
N B O 1110 = 1o = TSSO 30
2.7.2 REFEIENCING c.vevvertiriiieietetete sttt sttt et a e bt st et e e e e e ebe s 32
2.7.3 Open-LOOP MOVEMENTS ..coiiirierieeieeieeieeitesie ettt et s b e beesbeesaeesbaesanesasesane 33
2.7.4 Closed-LOOP MOVEMENTS....ccccviririeieiirieniesiesie sttt st sttt sae b st ste b st neene s 34
2.7.5 StOPPING MOVEMENTES ...coiuiiriiiieeieeeete ettt ettt sttt sb e sbeesbe e sbe e sbeesaresanesane 38
2.7.6 Overwriting Movement COMMANGS......ccccoivirerierieinenesesiesietee ettt saens 38
2.7.7 Movement FERADACK........ccciviririicieteeere e 39

2.8 DefiNiNG POSITIONS ...eeuiiiiiiiriiriirieieteeeest sttt ettt sttt sb et et n e ene e 42
2.8.1 RefErenCe MarkS.....coeoirieiiieirieieietreete ettt 43
2.8.2 Positioners With Single Reference Marks.......c.ceoeeeereneneneneineneneseneeeeeennens 44
2.8.3 Positioners With Multiple Reference Markscccoceevevineneneineneneneneseeeenens 46
2.8.4 Positioners With ENAStOp REfErenCe......ocevcvvveriecieeceeeeetee e 48
2.8.5 Shifting the Measuring SCAle.......coevieiriririreneieeeesese et 49

MCS2 Programmer’s Guide n _

TABLE OF CONTENTS

2.9 DEVICE MONITOMINEG c.eeiveiieirieenieenieentesteste st stestesrteesie e beesbeesbaesseessaesseesasesssesssesssesssessseensaensees 50
2.9.1 MovemMeNt MONITOMING ..ccuiiierieiieeieeteeeeee ettt sttt sb e b s e sare e 50
2.9.2 Magnetic Driver Overload ProteCtioncoeeevveieenerenenienieeeeseseseesieseeneeeennens 50
2.9.3 Hardware MONITOMING....cccueiririnieieieiriesiesie ettt st st sttt sae st st st besae e enesrens 51

B NS =Y (I = =4SSR T PSP SRRPRRR 52
2.10.7 DeVICe STALE FIAGS .cuveuveuiriiriirierieieieteteest sttt st sttt sbe sttt sae e ebe 52
2.10.2 MOAUIE StAte FIAgSeevvireeeieiicieeiereeteeree ettt sttt st et sttt s be s enee e 53
2.10.3 Channel State FIAgScueieiririinieieieeeeseseste ettt sttt eae 55

2.17 SENSOr POWETN MOUEScviiiiiiiiciieitnietert ettt st 59

2.12 PicoScale SENSOr MOAUIEcoueieieiirieeiereeetee ettt 60

2.13 ENASTOP DOTOCTION ettt sttt sttt ettt ettt st sbesat et e s bt et e s besatetesbesanenbens 61

2.14 FOllOWING Error DELECHION......cccieieierieeeeecte sttt ee e te et te e s s e sse e sesseesseseeennensens 62

2.15 SOftWare RANZE LiMit....cociviririeieieiriesierese ettt sttt ettt a e 63

2.16 STOP BrOadCastiNgccvecvirerieriieieieriesteste st etetestestessessestestesseessessesseensesseensessesseessessesssensens 65
2.16.1 Stop Broadcast CONfigUrationcccieererinenieieieencsesese et 65

2.17 COMMANG GIOUPS ..eiviiuieiiniereeriisteetesiesseestessesseessessesssessessesssessesssensessesseensessesssessesssessessesssensens 66
2.17.1 Command Groups vs. OUtPUt BUfer ..ot 68

2.18 TrajeCtory STrEAMINE ...coceeiieecteeeieetesteste ettt et et e bt e st esb e st e s bt e saee st e sabeebeesbeesbeesseesseesaees 69
2.18.1 General Streaming CONCEPT ...c.evvirieieireriesiertestete ettt sb st enee 69
2.18.2 BASIC APPIOACK ittt ettt ettt ettt be et sbe st et she b besaee e 71
2.18.3 OPLIONS .ottt sttt sttt st ettt et et sh et e b sbe e st b e s bt e e s bbb s re et e resae e e 72
2.18.4 TriGEEI MOTES ..ttt ettt st ettt b e st e b s b sat et s bt et e sbesaeenee e 72
2.18.5 Stream EVENTS ..o 74
2.18.6 Maximum STream RaAEScccvivviiiiiiiiiiiiiin e e 75

2.19 Auxiliary INpULS aNd OULPULScceeiiriieieie ettt ste e eseetesee s e e sresseessessesseesseeseesseseesnsensens 75
2.19.1 Digital DEVICE INPUL ..cueeuiiiieiirierieieieteeee ettt sttt sb e st ebe s 76
2.19.2 Fast Digital OULPULS....cvivieierieeeiereeteiert ettt sttt st sne et saeessesbesanensene 76
2.19.3 General Purpose Digital INPULS/OULPULScovevveieieiiririeniesieieeeesesesee e 76
2.19.4 FASt ANQIOZ INPULS c.eoutiiirieeiete sttt sttt sttt sttt sat et sae e b e besaneneene 78
2.19.5 Using Analog Inputs as Control-Loop Feedback.........cocvveveverieineninenienenieieenens 79
2.19.6 ANQIOZ OULPULS c..eitiieierieetete sttt ettt sttt sttt e e sbesat et s bt e b e besaeenseee 81

2.20 INPUE THIZEOE ceitiuieterteeieete sttt st et ettt e e st e et s bt e st et s bt e s e sbe s bt easesheeaeenbesbeense bt sneeaseseesmeensens 81
2.20.1 DiSabled MOGE....c..coeiiiiiiiriiite e 82
2.20.2 EMErgency StOP MOGE. ...ttt sttt e et se e essesnesnnensenns 82
2.20.3 Stream SYNC MOGE......coi ittt sttt ettt et sttt st e b b sae e 83
2.20.4 Command Group SYNC MOGE.....ccuivirieriiririenieseeieseeeete e esee s sseesse e essessesneensens 84
2.20.5 EVENE TFIZEEN MOTE ..uiiiiiiirierieieete ettt st sttt sb e st sttt ebe s 85

2.27T OULPUL TIIZERE woutiiiieieeieesie ettt ettt sttt st sste s s be s b e e s bt e s bt e s bt e sbeesaeeeabesnseebesbeeseesseesseensees 86
2.27.1 CONSLANT IMOAE ...ttt sttt be bbb a e ebe s 87
2.21.2 POSItion COMPAre MOAEcouiruiiiiiieieierieeierie sttt ettt et esee s et s essenbesanense e 87
2.21.3 Target REACh@d MOTEccoviviirieieieiineieserese ettt sttt 91
2.21.4 ACtiVely MOVING MO ..ottt sttt sttt st et st bbb s eee e 92

2.22 Phasing of Magnetic Driven POSItIONErS.....c..ccveieirirenienieieieiesiesesieseetee et 92

2.23 FEAtUNe PEIMNISSIONSeiiiiiiiiiiiiiiietenitit ettt st s st a e s s nesr s ne s 93

3 FUNCLiON REFEIENCE..........cooiiii et 94

3.T FUNCHON SUMIMAIY wetitiiieeieeieesiee ittt ettt et b e bt e s bt e s bt e saeesatesatesabeesbeesbeesbeesbeesseesnees 94

MCS2 Programmer’s Guide — _

TABLE OF CONTENTS

3.2 Detailed FUNCLION DESCIIPLION ..ievieiiriieeietesteeeeteseete e ste s te e st ese e sseessesseesseseeensensens 97
3.2.1 SA_CTL_GetFUllVerSiOoNSTIING ..c.cocuiririeiirieeierie ettt ettt st st 97
3.2.2 SA_CTL_GEtRESUILINTO uviviiiiiieiceiee ettt ettt st e s eabr e s s bt e s e sbae e s ssanes 98
3.2.3 SA_CTL_GIEVENTINTO cuvveii ittt ettt ettt ettt ettt ste e s s erte e s ssbeeesssnaeessssaeesssanees 99
3.2.4 SA_CTL_FINUDEVICES .evvieeeetiie ettt ettt s ettt e s s bee e s s sbbe e s s sbbe e s s sbaeesssnnes 100
3.2.5 SA_CTL_OPEN ttiiitietee sttt ettt ettt et bt et b e s at e b sbe s st et s bt et e b sae et enee 102
B.2.6 SA_CTL_CIOSE uteeieteeeeree ettt ete ettt ete e et e eeteeeeareesbeeebaeeebbeesabesebeeeesseesaresenseeessreenns 103
3.2.7 SA_CTL_CANCEI ettt te e s te e s taestvesabeeabeebeebeebeesbaesanestnesaresaseenne 104
3.2.8 SA_CTL_GEtPropPerty_iB32. .ottt ettt s e 105
3.2.9 SA_CTL_SetPropPerty_i32 .ottt sttt et s s be s 107
3.2.10 SA_CTL_SetPropertyArray_i32 ..o ettt sttt sre e s s s 108
3.2.171 SA_CTL_GEtPrOPeItY_I64...c.eiviirieiiiiieeieeieeneeneeseesiresressessbessseesseessaesaaessaesanesanesane 109
3.2.12 SA_CTL_SEtPrOPEITY_IB4 ...c.eeeieieeieeieeteetee ettt sttt s s s 110
3.2.13 SA_CTL_SetPropertyArray 164cccecerveereenieneentesiesresresssessseesseesseesseessaesasesasesane 111
3.2.14 SA _CTL_GEOtPIOPEITY_S ceeeeieeiteete ettt st sttt et 112
3.2.15 SA _CTL S PIOPEITY _Sueeirieirierieeieeieete ettt ettt st st st s b s be e be e beesbeesatesanesasesane 114
3.2.16 SA_CTL_ReqUeStREAAPIOPEITY .c..coueieiiriirierierieieieteeete sttt sttt 115
3.2.17 SA_CTL_REAAPIOPEITY_ 32 ..iiciiieieiieteierieetenie sttt sttt eee sttt b s e b sane s e 117
3.2.18 SA_CTL_REAUAPIOPEITY_IB4ooviieieiieiieiesiesiesiestete ettt sttt ene 118
3.2.19 SA_CTL_REAUPIOPEITY_S weerieiieieeieieeiteteste et sttt ettt st et st sbe et e b s e e e e 119
3.2.20 SA_CTL_RequeStWIitePrOPertY_i32 ...cccociieverereeeerieseeeesie et 121
3.2.21 SA_CTL_RequestWriteProperty_iB4ccereereirienienieeiee it s 123
3.2.22 SA_CTL_ReqUeStWIItEPrOPEITY _S.iiciiciirieerieerieeneeniesresresressreesieesseesseesieesreesanesanesane 124
3.2.23 SA_CTL_RequestWritePropertyArray_i32cccirierierienieeieeeesreeniee e 125
3.2.24 SA_CTL_RequestWritePropertyArray _i64ccuevvuerveriiersensennieenieenieesieeseesnesvesnns 126
3.2.25 SA_CTL_WatFOIrWIILE ..oei ittt ettt ettt et tr e eetbe e e ebe e ebee e aaeesbeseaseesaraeens 127
3.2.26 SA_CTL_CanCeIREQUESTcccviriirtieieieeeetesiteterie sttt sttt st eee st sre e sesnesnnensens 128
3.2.27 SA_CTL_CreateOUtPULBUTTENcoiicieieeereeee st 129
3.2.28 SA_CTL_FIUShOULPULBUTTEI .c.eieieieieeteeteerie ettt et 130
3.2.29 SA_CTL_CancelOUtPULBUTErcoivieieieeeerereee et 131
3.2.30 SA_CTL_OpenCommandGrOUPccceecueriererrieriereeniesieseesesiestessessesssessessesssensessesssenne 132
3.2.31 SA_CTL_CloSeCOMMANAGIOUP c..ccveuveuirrerierierienieieseestesesiessessesseseesessessessessensensensenessens 133
3.2.32 SA_CTL_CancelCommandGrOUPcocueruereerierieriteieniesteeesieesteseesiesstestesieessensesaeensenne 134
3.2.33 SA_CTL _WaAItFOIEVENT. .. eevteeiiiii ettt ettt et e e e e e e sebae e e e e e s sssnssraneeesessssnnns 135
3.2.34 SA _CTL _CAliDIate coeeeeiiieeeeeieiie ettt ettt et e s e ettt e e e e s ssssaasteeeesssssssssasseeessssssnns 137
3.2.35 SA_CTL_REFEIENCE cooiieeeeee ettt ettt et e s st e e s sbree s ssanes 139
3.2.36 SA_CTL_IMIOVE ...ttt ettt ettt ettt te e s te e e ta e e e be e sbe e e bae e bbeesabeeenbesesaseesnbasesseesasanans 141
3.2.37 SA _CTL_STOP cttruieiiriieieriesitetesie st e e st st et st et e tesaeestebesaeeneessesseensessesssensesssensensessnensenns 143
3.2.38 SA_CTL_OPENSTI M ...ciiiiiiieiteeieeeeteetee ettt s sttt ettt saee e 144
3.2.39 SA CTL_StreamErame .ottt s s s s ss s s s s s s s s s s sssans 146
3.2.40 SA_CTL_ClOSESIIBAM c.uuveeiiirieeeiireee ettt e seirteesstreesssbeeesssabeesssbaeessssreesssssseeessssssesssnres 148
I Y N G W Y o Yo] 6 6 <Y=1 o o VRPN 150

4 Property REFEIENCE. ...ttt 151

4.1 Property INtrOUCTION c..coiiciiriirieieeetetest ettt sttt st sttt st et e sae et estesaeensense s 151

4.2 Property SUMIMAIY c.ceceeieereenieenee e st sttt ettt e st e sreesseesheesaeesanesanesaseeane e seesneesmeesanesmnesanesane 152

4.3 DEVICE PrOPEITIES ettt ettt et sb e st e st e sat e sate st e st e e be e s bt e sbeesaeesaeesanesanesane 157
4.3.T NUMDBEr Of CRANNEIS.....vi ittt erre e s e e sta e s aesarestbeebeebaesbaens 157

MCS2 Programmer’s Guide

TABLE OF CONTENTS

4.3.2 Number of BUS MOAUIESccoriririeieieenteesereeteeese et 158
4.3.3 INLEITACE TYPE ettt sttt s b e sttt et ae b s b st e st e nae e e e ebeas 159
4.3.4 DEeVICE STAO....ciiiiiiiiiic e 160
4.3.5 Device Serial NUMDETccciiiiiririieeteeesese ettt st 161
4.3.6 DEVICE NAME ..ottt ettt st sttt et e be e be e beesatesabesaseenseenseens 162
4.3.7 EMErgency STOP MOGE......cueieiririnieieieieeeeiesese ettt sttt sttt eae s 163
4.3.8 Network DiSCOVEN MOGEooieiiriirieierieetee ettt sttt et san s 164
4.3.9 NetWOrk DHCP TiMEOUL....ccueieiriririeieieieeiesiesiesie ettt sttt sbe sttt sne e e enen 166
A4 MOAUIE PrOPEITIES..ccieteitetestert ettt ettt sttt e e st et et sbe et et e st entesbesatentesbeeasensens 168
4.4.17 Power SUPPIY ENADIEA ..c..oiiiiiiieeeseeee ettt s 168
4.4.2 Number of Bus Module Channels ... 169
e S |V o To L8] 1= 1Y/ o 1 TSRO 170
444 MOAUIE SEALE ...uuiiieieeeeee ettt ettt sttt st b e ettt e e 171
4.5 POSITIONEN PrOPEITIES .oeiiiiiiiieerieerteste sttt ettt ettt sae e st st st e st s b e b e e sbeesaaesanesanesanesane 172
4.5.T STArtUP OPLIONS ceoeeeiieeieeeeee ettt sttt ettt e b e e ss e smeeemeeeeeeneens 172
4.5.2 AMPIIfier ENADIEdccuieuiiiiiieieeceeee ettt sttt 174
4,53 AMPIIfIEr MOGE ...ttt sttt b e sb st st a et ebe e 176
4.5.4 Positioner CONtrol OPLiONS......covvieierenirteeeetert sttt s er et s sae e 178
4.5.5 ACTUALOT MOoouiriiiiiiieieieet sttt sttt et b bbb sa et e e eneas 180
4.5.6 CONLrOl LOOP INPUL eitiiiiiiiiieieie sttt ettt ettt ettt et st st sbe s enee e 182
4.5.7 SeNSOr INPUL SEIECT ..oviviieieietresereee ettt st eae e 184
4.5.8 POSITIONEE TYP ittt ettt sttt et et e et e bt e s bt e s be e st e eaeeeneeebeenbeens 186
4.5.9 POSItIONEr TYPE NAMIE...iiiiiiiiiiiiieeieereerteste sttt esteesteesseesbaesssesssesssessseessaessaens 188
4.5.10 MOVE IMOGE.....cuuiiiiiiiietetete ettt sttt ettt et ettt et s bt et et e sbe et e sbe s st et e sbesaeenbenee 189
T I B @ o = o T Y] o 1= I PRSP TRP 191
4.5.72 ChanNNel STAT@....ouiiuiririirieiete ettt sttt et be st sttt ene e 192
4.5.T3 POSITION cutttiiieeieeteeeeeeeste sttt ettt st et st st st st st e be e satesabesabesabesabeebeebeens 193
4.5.T4 Target POSITION ..eeiieiiieeiieeieeeeete ettt sttt ettt et s st e ee e e e eneens 195
4.5.T5 SCAN POSITION ettt ettt st sttt et e bt e bt e st e st e st e eateebeebeens 196
4.5.76 SCAN VEIOCITY weevteiieiiriirierieieieieet sttt sttt et sttt es e sbe st et na et e e eneas 197
A.5.17 HOIA TIMI@ ettt sttt sttt bttt st et e be s st e besbesaaensenee 198
4.5.18 MOVE VEIOCILY v.uveuieiirierienieieieiiei sttt sttt sa ettt ebe bbb sae e neeneas 200
4.5.19 MOVE ACCEIEIATION ..ottt ettt ettt sttt st s be e e e e 202
4.5.20 Max Closed LOOP FrEQUENCY ...cceveeierieeieeeeeeteeteste et te e seeetestesseessessesseessessesseessens 204
4.5.21 Default Max Closed LOOP FrEQUENCY ..c.cveereririerieieieieeiesiesiesieteeeie et neeesaens 205
4.5.22 SEEP FrEOUENCY ..eeeirieieiiieiieeeiteeeeteestee et e s siteesreesree e sss e e saseesaseeesaseesaseesneeesasaesanessssnens 206
4.5.23 STEP AMPIITUAE c..oviiiiiieieeee ettt sttt b s sttt ebe s 207
4.5.24 FOHOWING EITON wuiiuiiiiiieieierieeterte sttt sttt sttt sbe st e s sae et estesbeensesbesssensensesnnensenns 208
4.5.25 FOHOWING Error LIMIt ..coeeieieiresiesiesteeeecsese ettt et 209
4.5.26 Broadcast STOP OPLiIONS....ccuieierererierie sttt ettt sttt sttt saeestesbe s e esesaesanensenne 210
4.5.27 SENSOr POWET MOc.uiiiniiiiiiriisierieietetee ettt ettt be st st st st ne e ene e 211
4.5.28 SeNSOr POWEr SAVE DEIAYcoieviiriieieiesieeiteeeitetest ettt sttt sttt st et 213
4.5.29 POSItIoN MEan SHiftcouiiiiieieiriseseee et 215
4.5.30 SaAf@ DIF@CLION .c.ceuiitieirierierietete sttt ettt sttt be st st et e esesbesbesbensenaeneeneas 216
4.5.31 Control Loop INPUE SENSOI ValUE......couveeeeiiieeeeertteeetere et 218
4.5.32 Control Loop INPUL AUX ValUEc..eiiiiiieieeeeteteteetete ettt 219
4.5.33 Target To Zero Voltage Hold Threshold.........cccecvrieeereninierieseceeeseseeee e 220

MCS2 Programmer’s Guide “ _

TABLE OF CONTENTS

4.6 SCAlE PrOPEITIES ..icuieieieceetese sttt et te sttt e st st et e s teesaebesaeeseessessesseessesseessessesseensesseensensens 222
4.6.17 LOEZICAl SCAlE OFfSOL ..ivuiiiieieieiirieseree ettt st eae s 222
4.6.2 LOgICal SCAlE INVEISION ..coviiieieiesieeiete sttt ettt st sre e nesnnense e 223
4.6.3 RANZE LIMIT MIN oottt ettt et s ne e 225
4.6.4 RANEZE LIMIT IMAX cettiiiiiiiiiiiiniirie ettt ettt ettt sttt e st s bt s sbeesbeesasesatesaseeseenseens 226
4.6.5 Default Range LIMIt MiN c..ccociiiririnieieieinceeseeee ettt 227
4.6.6 Default RANZE LiMIt IMAX ..oviecieririerieriesieeteiesie ettt ettt et sae et et e estesaesanensenne 228

4.7 CalibDration ProPerti@S....c.ccireieieirieriirieieietet ettt sttt ettt st et se et be bbb be s e e eneenens 229
4.7.1 Calibration OPLIONS .c..ecieiiiieieiesieetete sttt ettt et sttt st e b b sasenee e 229
4.7.2 Signal Correction OPLIONS.......ccuvieerierierieireeenesestet ettt sttt ebe sttt se e e enens 231

4.8 ReferenCiNg PrOPEITIES ..ccivirieieieisistesetetetet ettt sttt b e st st ae e e s ne b 233
4.8.1 ReferencCing OPLIONScccciiieierieseeieie st etes e se st e e srestessesaeestessesseessessesseessessesssensenns 233
4.8.2 Distance To ReferenCe Markccovererieiriininineneieeeese st eaeas 235
4.8.3 Distance Code INVErted ..ot 236

4.9 Tuning and CUStOMIZING ProPerti€S......cccevieieiriririerierieietee sttt st seee s 237
4.9.17 PoSItioner MOVEMENT TYPE ...oviieieeieerieenieenteste sttt et steesteesbeesbeesseesaeesaeesasesnseenseens 237
4.9.2 POSItiONEr IS CUSTOM TYPE.uuiiiiiiiieieeieenieesee sttt ettt ettt e st e e smeesmeesmeesreeneeens 239
4.9.3 PoOSItioNer Base UNIT.......ooiiiiiiiieieeieeeeseest ettt ettt ettt sve e 240
4.9.4 Positioner Base RESOIULIONcvivirierieieiiieesesesteteeeeere sttt 242
4.9.5 Positioner SENSOr HEad TYPE. ottt sttt st s 244
4.9.6 POSItiONer REfEreNCe TYPE...cviuirieirieieeeieriteese ettt sttt 245
4.9.7 POSITIONEN P GaIN c.tiiitiiiiiiiieteee ettt sttt ettt et e bt e bt e st esaeesabeebeebeenbeens 247
4.9.8 POSIIONEr | GAINoiviriiiiiiiiiiiiiic e 248
4.9.9 POSIIONEN D GaAIN..utiiiiiiiiiiiieeeeeee ettt sttt ettt e bt e s bt e s esseesabeeeeebeereens 249
4.9.10 POSIIONEr PID SNt .ooviiiieieieiresereeeeee et 250
4.9.11 POSItioNer ANti WINAUP .cveveieiniininieieiesesese ettt sttt st ene s 252
4.9.12 Positioner ESD Distance Threshold........cccoovvivinininnenencciesesceee e 254
4.9.13 Positioner ESD Counter TRreshold........cccovevireneneinineneseeeeeesesese e 256
4.9.14 Positioner Target Reached Threshold ..o 257
4.9.15 Positioner Target Hold Threshold........ccccveieerineneieiereseeeeseeseseee e 258
4.9.76 SAVE POSITIONEE TYPE .ttt ettt sttt ettt ettt e bt e bt e st e st e s b e ebeesbeeneeens 260
4.9.17 PoSIitioner Write ProteCliONociieeieiereeeeereetesteee et 261

4.70 STreamMIiNG PrOPEITIES ...oouieieitentte ettt sttt e st st st e st et b e sbeesbeesaeesaeesaneeane 262
4.10.1 Stream Base Rate ... 262
4.10.2 Stream EXternal SYNC RALEooo ittt st 263
4.710.3 SEream OPLIONS . coiii ettt ettt ettt st st st e s beesbeesbeesbaessaesasesasesnseesaensaens 265
4.10.4 Stream LOad MaXiMUIM .o..cueieirerenienieieeseeese sttt eseesesiesiessessesesesseseessessensensensenens 266

4,77 DiagNOSTIC PrOPEITIES. ..cocueiiieitirterte ettt ettt ettt st s st st st e sabesbe e b e e s aeesaeesanesanesasesane 267
4171 CRANNEIEITOF ciiiiieiieieeiesieteteeet sttt ettt sttt sttt et a b sb et e s be s e s eneeneas 267
4.11.2 Channel TEMPErAtUIEcccoieierierierieie sttt ettt ettt e st sae et e besse e sesbesanensenne 269
4.11.3 BUS MOAUIE TEMPEIATUI....c.eeuiriieiiieieieieeieeteste ettt ettt ene s 270
4.11.4 PoSItioner FAUIt REASONiui ittt st 271
4.171.5 MOEOT LOQU ...ttt ettt ettt sb st et nae e e e eneas 273

4,12 AUXIIAIY PrOPEITIES....couiiuieieiieeiteteste ettt ettt et sttt sttt sae et e b et esbesbeeatentesbeensenbens 274
412,17 AUX POSITIONET TYPE@ weiiiiiiiiiiirieeie ettt sttt st eteesteesbaesbaesssesasesssesssesnsaensaens 274
4.12.2 AuX POSItioNer TYPE NaMI@ ...uiiiieeeeeeee ettt st e 276
4.12.3 AUX INPUL SEIECE ..couiiiieieiesteeee sttt sttt esbe s e e e saesnnensens 277
4.12.4 AuX I/0 MOdUIe INPUL INAEX c..eeiirieiieienieeieieeieete sttt sttt st st ee e 278

MCS2 Programmer’s Guide O

TABLE OF CONTENTS

4.12.5 Aux Direction INVEIrSIONcccciiiiiiiniiiiiii e 280
4.12.6 Aux I/0 Module InputO / INPULT ValUe ...cc.eouiriiiiiiiieieeeeteieseeee et 282
4.12.7 AUX Digital INPUL VAlUC......oiuieeieiicieceee ettt st s 284
4.12.8 Aux Digital Output Value / Set / Clearocvevirereieieeneseseseeeee e 285
4.12.9 Aux Analog Output Valuel / ValUeTc.coveieieieiirieieeseetesie e 287
4.13 1/0 MOAUIE PrOPEITIES ...euveneinieiieiieieriesiestestetet ettt sttt st ettt be bbb ae s e e ene b 289
4.13.7 1/O MOAUIE OPLIONS ...ttt sttt sttt sttt et sbe et e b s e e sesbesaneneenne 289
4.13.2 1/0 MOAUIE VOILAZE...c..eiiieieiieiiriestereteteete sttt sttt st st 291
4.13.3 1/0 Module Analog INPUL RANGE ...c.eeiiriieiiiieieetertetee ettt st s 292
414 INPUL TIIZEEI PrOPEITIES ..coueeieeieeieieeieeieste ettt sttt ettt ettt sbe e besreemeene s 294
4.14.1 Device INPUL TFZEEI MOUE ..c..coiiiriirieienieeteeste ettt sttt sttt st s s 294
4.14.2 Device Input Trigger CONAItioNccceciveereerieieierieseetese et ee e 296
415 OULPUL THIZEEI PrOPEITIES «..eieiiitieriteiie ettt sttt st st sttt ettt be e sbeesaeesaeesane e 297
4.15.1 Channel OULPUL Trig8er MOcccveriivereeiieeeterieeee ettt st s saesae s 297
4.15.2 Channel OUtpuUt Trigger POIaritycccoeveiriirirerienieieeeesesesee e 299
4.15.3 Channel Output Trigger Pulse WIidthccccovieieninirienineeene e 300
4.15.4 Channel Position Compare Start Threshold.........cccevveireneneneninnnereneeeeens 301
4.15.5 Channel Position Compare INCremMeNnt......oieeerineeienereeiese e 302
4.15.6 Channel Position COMPare Dir€CtiON........ccvererierieieieiniesenietetee et 303
4.15.7 Channel Position Compare Limit MiNcccccoieiiiininiiieneneeiese ettt 305
4.15.8 Channel Position Compare LiMit MaXccccocererererieinenineneneieeee e 307
4.16 Hand Control Module Properties ... eeierenieierie sttt ettt et st st 309
4.16.1 Hand Control Module LOCK OPLiONS......ccccvrieeeierieeeiereseeteste et 309
4.16.2 Hand Control Module Default LOCK OPtioNS.......cccevveieirerenenieieeeesesesie e 311
477 API PrOPEITIES ..oeiiieieeieesteeie et este ettt st sttt e esbe e sbe e sbaesaaesatesabesaseesbaesaenbaesbaesanesanesasesans 312
4.17.1 Event NOtifiCation OPLIONS ..c.cciviririerieieeeesese ettt st 312
4.17.2 AUTO RECONNECT.c.eeiiiiieiteieiete ettt et sr e st s e e ne e e e 314

5 EVENtREFEIENCEciiiiii ettt 315
5.1 EVENT SUMIMAIY cetiiiiiiiiiieiie ettt ettt steessiteesireesareesreeemesesareesaseesasesesasassssssessseesseesasenesseenns 315
5.2 Detailed EVENT DeSCIIPLION . c..ciiiieieneeteteseet ettt sttt sttt et sttt bbb st eee e 317
5.2.T INONB i s 317
5.2.2 Movement FINISNE ..ottt 317
5.2.3 HOIAING ADOITEA ..ottt sttt ettt st st sae et e st e b saeenaenees 317
5.2.4 Positioner Type Changea.......cceerererieiririenisienieiteteeeie sttt st 318
5.2.5 Phasing FINISN@....cccuoiiiiiiiieeeeteet ettt sttt 318
5.2.6 Sensor State Changed.......ccoceverirerieieineeer ettt 319
5.2.7 Reference FOUNG ..ottt 319
5.2.8 FOIOWING Error LMt ...icveerieieie ettt st eesse e naennas 320
5.2.9 Sensor Module State Changedccooiieeiininieiieee et 320
5.2.10 OVEI TEMPEIATUIE ..coueveeeieeeree et et e sree e st e seeesbeesssesesareesareesseessnseesaseessesssnseesseesnnes 320
5.2.11 Power SUPPIY OVEIIOAdooueiiiiiriieieienieeteieetete ettt ettt e 321
5.2.12 POWer SUPPIY FAIlUM@....ouieieiieieieseetee ettt sttt ses 321
5.2.13 Fan Failure State Changed.......ccccoereieiririreserieieee et 322
5.2.14 AdJustmMeNnt FINISNEAcooiiiiiiieieeceeceeee ettt st 322
5.2.15 Adjustment State Changedcocovevieiririnireeee et 322
5.2.16 AdJUSTMENT UPAALE ..ottt sttt ettt sttt st sttt sb s e s e 323
5.2.17 Stream FiNISNEd ..o 323

MCS2 Programmer’s Guide “ _

TABLE OF CONTENTS

5.2.18 Strea@m REAAYc.eceeeeiieieiesieeeete sttt ettt et a e stesaeessesseese e sesresneensesneensenss 324
5.2.19 Stream TrIZEEIad ...c.uoii ittt ettt st sttt et st e sttt nees 324
5.2.20 Command Group TriZEEIEdcccvveeierirereeniieeerie st eeetesteseeesae e sseesessesseesesseesseses 325
5.2.21 Hand Control Module State Changedc.ccoeveveieeninineneeeeesese e 325
5.2.22 Emergency StOP TrZEEIEAcccveviverieieeeeterieeeete sttt sttt sae e s sneessesees 326
5.2.23 External INPUL TrZEEIedcovirirerieieinieeiesiesiesietete ettt 326
5.2.24 REQUEST REAAYocveiiiiiiiieieseeteestest ettt ettt st sttt st s ae b sae et e 326
5.2.25 CONNECLION LOST..iutiiiiiriieieriirieie sttt sttt sttt ettt ste bt et e b sbe et e e e e b e sbeensenees 327

6 ASCIIINEEITACE ...ttt sttt st e sbe et e be s et e s e sbessnesesseensenes 329
6.1 CONNECLION SETUP ettt ettt ettt et et e st s sbe e saeesae e e b e e b e e bt e sneenneesnees 329
6.1.1 Note On Message TerminNatioNcocceeveereererneenieneenee sttt 330

5.2 SCPI BASICS eueetiiieieriesieeie sttt st et ettt et et s et s bt s st et s bt e e st e s bt et esbe e st et e s bt enbe s b e saeetesheeneennen 330
6.2.1 SCPI Conformance INformation......ccccooieieieninieiereteee ettt 330
6.2.2 COMMANA SEIUCTUE. ...ttt sttt ettt b e b bbb 331
6.2.3 Traversing the COMMAaNd TrEEcoeeiiriiiirieiteteret ettt 332
ST O T 1Y =L 333

6.3 Basic Programming EXAmMPIES ..ottt sttt 333
6.3.T GO PrOPEITY coeiieeiee ettt ettt et s e s e s b e e s b e e sabeessnteesareesareeesnseesaneesanes 333
0.3.2 SEUPTOPEITY ottt ettt ettt st sae e st st s b e b e e b e b e reennees 334
6.3.3 CAlIBrate cueeeeeieieeeceee et st st ettt ae et nns 334
6.3.4 REFEIENCE .. ittt ettt 334
B.3.5 IOV ettt et ettt h e bt e h e s h e s he e st e e te e be e be e bt e beesaeenaees 334
6.3.6 STOP ittt 334
6.3.7 MOVEMENT STATE ..ottt sttt st st b e s 335
6.3.8 ErrOr HAaNAIING...eouerieieieieiereseesee ettt et 335

6.4 USING COMMANG GIrOUPS ..veiuiiiieiieieriesitete st sitete st et e s bt sttetesbe st e besbesatenbesbeeatenbesatensesbeensensens 337
6.4.17 COMMANG SEL ..ot 337
6.4.2 EXAMPIES oottt st sttt et st b et nas 338

6.5 SEreamiNg TrajECLONIES ..uiiiiirieeierterterte sttt s e s e e st sate st e s sbeesbeesbaessaessaesanes 340
6.5.T COMMEANGA SO ..ottt ettt ettt sbe st b e e eneene 340
6.5.2 EXAMIPI@ et st st e et ae e et e aeentenrs 342

6.6 COMMANG SUMMAIY .ttt ettt ettt sttt et e st e b sbe st st e b et ebeeseebesbesbenbenseneeneene 343
6.6.T COMMON COMMANGAS ...iouiiiiiiieieie sttt ettt et e sttt st sae e b besseessesbesanensesnsensesees 343
6.6.2 Movement COMMANGSccererirerieieineeie ettt sttt be b s e e e neene 344
6.6.3 Property COMMANd TrEccuiviiiierierieieseeterte ettt ettt st et sttt s sa e b sasenseseas 344

6.7 SCPIEITOF COUES. .ttt sttt ettt sttt et e be bbbt et e s sa e besbe b e b e e e e eneene 350
A Code Definition REFEIrENCEcooiiiiee ettt st e 351
AT EFTON COARS vttt sttt sttt b sttt et e b s b e sbe b et et et ebesbesbenbe b e s eneenens 351

MCS2 Programmer’s Guide n _

1 INTRODUCTION

This document describes the application programming interface (API) of the SmarAct MCS2. It may
be used to control one or more MCS2 devices by software.

The MCS2 system supports different command interfaces (e.g. USB or ethernet) and driver mod-
ules to control actuators with different driving principles (e.g. stick-slip piezo actuators or magnetic
driven positioners). Note that different modules have different features and properties. Further-
more, default settings and available options may differ between modules. Detailed information
about the differences is given throughout the document.

While this document mainly serves as a reference when programming your own software it also
supplies some background information for a better understanding of the overall system.

Note that this document provides interactive cross-references for easy navigation. Clicking on
a section reference, function- or property-name refers the reader to the corresponding detailed
description.

1.1 Terminologies

This section defines general terminologies that are used throughout this document. This section
only gives a brief summary and the terminologies are explained in more detail later in this docu-
ment.

Closed-Loop Movements are movements where sensor data is used as feedback to control the
position, velocity and/or acceleration of a positioner. To be able to perform closed-loop
movements the targeted positioner obviously must be equipped with an integrated posi-
tion sensor. Furthermore, the sensor must not be disabled. See section 2.7.4 Closed-Loop
Movements.

Open-Loop Movements are movements that do not use sensor data as feedback. The positioner
simply moves according to the given parameters and the exact distance traveled is unde-
fined. Especially, movements in different directions, but otherwise identical parameters, will
typically result in slightly varying traveling distances. See section 2.7.3 Open-Loop Move-
ments.

Calibrating is a process where the controller analyzes the individual characteristics of a positioner
in order to optimize closed-loop behavior. The calibration data is saved to non-volatile mem-
ory. Therefore, the calibration only needs to be performed when the system setup changes,
but not necessarily on each system start-up. See section 2.7.1 Calibrating.

Referencing is a process where the controller moves a positioner to detect its absolute physical
position. After the referencing, points of interest identified in previous sessions may easily
be recalled. See section 2.7.2 Referencing.

MCS2 Programmer’s Guide “ _

1 INTRODUCTION

Trajectory Streaming allows to move several positioners synchronously along a defined trajec-
tory. See section 2.18 Trajectory Streaming.

Stopped State means the state where the control-loop is disabled and the channel can not ac-
tively hold the current position. The output of the driver does not change when the channel
is in stopped state.

Holding State means the closed-loop state where the control-loop is enabled and the channel
actively holds the current position by continuously updating the driving signals.

Hold Time The hold time of a closed-loop movement specifies how long the positioner will ac-
tively hold its position after reaching the target. This may be useful to compensate drift
effects.

Max Closed-Loop Frequency When performing closed-loop movements with piezo driven posi-
tioners, the control-loop uses the current position and the commanded target position to
generate a driving signal for the piezo actuator taking the control-loop parameters (PID) into
account. The maximum allowed frequency that is generated by the control-loop depends on
the actual positioner as well as the environment. (E.g. HV and UHV requires lower allowed
frequencies.) The max closed-loop frequency defines the upper limit for the generated driv-
ing signal.

Phasing For magnetic driven positioners the controller must know the absolute position of the
slider within a magnetic period. The sequence of establishing a phase reference is known as
"phasing". See section 2.22 Phasing of Magnetic Driven Positioners.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

2.1 Connecting and Disconnecting

Before being able to communicate with a device a connection must be established via a call to
SA_CTL_Open. This function connects to the device specified in the locator parameter (see sec-
tion 2.1.1) and returns a handle to the device, if the call was successful. The returned device han-
dle must be saved within the application and passed as a parameter to the other API functions.
Once the connection is established you can use the other functions to interact with the connected
device. If an application requires to connect to more than one device it must open each device
separately. The API processes all communication independently for each device handle.

A device that has been acquired by an application cannot be acquired by a second application at
the same time. You must close the connection to the device by calling SA_CTI_Close beforeitis
free to be used by other applications. Not closing a device will cause a resource leak.

If you have threads blocking on functions like SA_CTL_WaitForEvent you may unblock them
for a clean shutdown by calling SA_CTL_Cancel. The SA_CTL_WaitForEvent function will
then return with the error code SA_CTL_ERROR_CANCELED.

NOTICE

Connecting to a device via the ASCll interface uses a different mechanism. Please

refer to section 6.1 "Connection Setup" for more information.

2.1.1 Locators for Device Identification

Devices are identified with locator strings, similar to URLs used to locate web pages. The following
sections describe the syntax of these locator strings.

USB Device Locator Syntax

Devices with a USB interface can be addressed with one of the following locator syntaxes:

* usb:sn:<serial>
where <serial> is the device serial which is printed on the housing of the device.
Example: usb:sn:MCS2-00000412

MCS2 Programmer’s Guide n _

2 GENERAL CONCEPTS

* usb:ix:<n>
where the number <n> selects the nth device in the list of all currently attached devices with
a USB interface.
Example: usb:ix:0
The drawback of identifying a device with this method is that the number and the order of
connected devices may change between sessions, so the index n may not always refer to the
same device. It is only safe to do this if you have exactly one device connected to the PC.

It is recommended to use the first format for USB devices.

Network Device Locator Syntax

Devices with a network interface are addressed with one of the following locator syntaxes:

* network:sn:<serial>
where <serial> is the device serial which is printed on the housing of the device.
Example: network:sn:MCS2-00000412

* network:<ip>
where <ip> is an IPv4 address which consists of four integer numbers between 0 and 255
separated by a dot.
Example: network:192.168.1.200

NOTICE

Data transmission bandwidth and latencies over networks can vary much more

than over e.g. USB. A program should not rely on low transmission latencies.

2.1.2 Finding Devices

Devices may be connected to by using a specific locator as outlined above. To find devices auto-
matically the function SA_CTL_FindDevices may be used. It will scan the USB ports as well as
the network interfaces and return a list with the locator strings of the found devices.

Note that the Network Discover Mode property (see section 4.3.8) must be configured to active
or passive mode to make it possible to list devices with ethernet interface. Note further that in
case the DHCP mode is enabled a device cannot be found while the DHCP IP address allocation is
running. If no DHCP server is available the interface will fall-back to the static IP settings after the
configured DHCP timeout has expired. (See Network DHCP Timeout property, section 4.3.9). After
that the device can be found again by the discovering but nevertheless a connection may probably
not be established if the static IP settings do not match the users network settings.

MCS2 Programmer’s Guide n _

2 GENERAL CONCEPTS

2.1.3 Device Enumeration Options

By specifying the opt ions parameter of the SA_CTL_FindDevices function, the default behav-
ior of the function can be changed. The configuration consists of a number of parameters with
default values, which will be used if they are not specified by the user. Parameters are organized
in multiple lines separated by a newline character (\n). Each parameter line must contain a pa-
rameter with an optional value separated by a space character. Available parameters and their
default values are:

iface-type usb, network Select interface types for device discovery. Mul-
tiple values must be specified in separate lines.
Setting this parameter once disables the default
value. Possible values are usb and network.

find-only-available true List only devices which are currently not in use.
Only network devices support discovery while al-
ready in use.

only-locator true Output format is one locator per line. See sec-

tion on extended output format below.

strict true Report unknown parameters as error. When dis-
abled unknown parameters will be ignored.

Extended output format

When disabling the only-locator parameter, the output format switches to an extended for-
mat which contains additional properties for each found device. Each line still contains one de-
vice, but consists of multiple key-value pairs. To enable output of a specific property add the line
include—-<property> in the options string, with <property> replaced by the actual prop-
erty name. By specifying the special option include-all all available properties for a device are
returned. Possible properties are:

locator Device locator
iface-type Interface type
device-sn Device serial number

device-info Device info string
available Device is available

network-host Device IP address

The property key and value are separated by an equal sign (=) and the key-value pairs are sepa-
rated by a pipe character (|). Note that you cannot rely on a specific property order when parsing
the output. Also the list of available properties depends on the interface type. To encode values
with special characters percent-encoding with the following substitutions is used:

MCS2 Programmer’s Guide _

2 GENERAL CONCEPTS

Replacement

| 37C

\n $0A

= %$3D

% %25
Example option settings

Find only USB devices (specifying i face-type once disables the default behavior):

iface-type usb

Possible Output:
usb:sn:MCS2-00000088

Find devices on all interfaces (parameter must be specified multiple times):

iface-type usb
iface-type network

Possible Output:
usb:sn:MCS2-00000088
network:sn:MCS2-00000952

Find all network devices including unavailable ones with extended format output:

iface-type network
find-only-available false
only—-locator false
include-locator
include-available

Possible Output:
available=0|locator=network:sn:MCS2-00000685
available=1|locator=network:sn:MCS2-00000952

2.1.4 Network Interface Configuration

While devices with USB interface do not need any interface configuration, the ethernet interface
must be configured with the network parameters: DHCP mode, IP address, subnet mask and
gateway IP address. The MCS2 is delivered with a default IP configuration which may be adjusted
to match the users network settings.

The following table lists the default configuration:

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

Default Value

DHCP Mode disabled

IP Address 192.168.1.200
Subnet Mask 255.255.0.0
Gateway IP 192.168.1.1

Pass-Key smaract

The interface may be configured to use DHCP to obtain an IP address from a DHCP-server or to
use a static IP configuration. The configuration may be changed by connecting to the integrated
web server, by using the configuration menu of an MCS2 hand control module or by using the
SmarActNetConfig tool for the PC.

See the MCS2 User Manual document for more details on the configuration.

2.2 Properties

Properties are configuration values that define the behavior of the device. Each property has
a data type and an access mode. Some properties may be read and written, while others are
read only or (in rare cases) write only. See chapter 4 "Property Reference" for a list of available
properties and their descriptions.

Depending on the data type a property has you must use the corresponding function variant to ac-
cess it. For example, the Number of Channels property is of type 132. Therefore, you must use the
SA_CTL_GetProperty_1i32 function to read the property. In contrast the Device Serial Num-
ber property is of type string. Therefore, you must use the SA_CTL_GetProperty_s function to
read the property.

Properties are identified by a property key that must be passed to the function call when accessing
a property. Properties are categorized into device, module and channel properties. Module and
channel properties require an additional index parameter to address a specific module or channel.
Read the Number of Channels and Number of Bus Modules properties to determine the valid
range for the channel and module index parameters. Note that the index parameter is zero-based.
In case of device properties the controller is already addressed by the device handle. Therefore,
the index parameter is unused and must be set to zero. For API properties the index parameter is
unused too and must be set to zero.

Most properties are non-persistent which means that modifications do not outlive a power cycle.
At device start-up they have the default value that is specified in the detailed property description.
Other properties are kept persistent in the internal non-volatile memory. Therefore, their values
are preserved and loaded at device start-up.

Note that not all properties are applicable for all interface and driver modules. Refer to the Prop-
erty Reference to determine if a property is valid for a specific module. Reading or writing a prop-
erty which is not available returns a SA_CTI,_ERROR_INVALID_KEY error. Read the Interface
Type, Module Type or Channel Type properties to determine the type of the interface, module or
channel.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

2.3 Accessing Properties

Modifying or retrieving property values takes a major role in controlling a device by software.
Therefore, the API offers a variety of functions to get and set property values in order to meet all
requirements an application might have. A straight forward method, though easy to use, is some-
what inefficient, while more complicated methods may greatly improve efficiency. The application
may decide on a per-call basis which method to use, thus being very flexible depending on the
applications context.

The different methods of accessing properties may be categorized by their use case and are de-
scribed in the following sections. The figures illustrate the sequence of actions for getting two
property values. Green boxes indicate non-blocking API calls while red boxes indicate blocking
calls. Setting properties is very similar and is not explicitly discussed.

2.3.1 Synchronous Access

This is the easiest method for accessing properties since it consists of one simple function call
for getting one property value (e.g. SA_CTL_GetProperty_1i32). When the function returns the
result is available (see figure 2.1).

Time Host Device
User Code Command
Transmission
Command
Processing
Reply
Transmission I
Command
Transmission
Command
Processing
Reply
Transmission I
v

Figure 2.1: Synchronous Property Access
When the API function is called a command is sent to the device and the function waits for a reply
from the device before it returns. From the view of the application, the function has a blocking
behavior. Depending on the transmission delays the blocking time may be in the range of several

milli seconds. During this time the user application cannot perform any other tasks. Therefore,
this access method is the slowest of all.

Functions Used

SA_CTL_GetProperty_i32, SA_CTL_SetProperty_132

MCS2 Programmer’s Guide _

2 GENERAL CONCEPTS

Example Read

int32_t valuel[2];
int8_t channel;
for (channel = 0; channel < 2; channel++) {
SA_CTL_Result_t result = SA_CTL_GetProperty_ 132 (
dHandle, channel, SA_CTL_PKEY_ CHANNEL_STATE, & (value [channel], 0)
)i
if (result) {
// handle error
}
}
// value[0] and value[l] hold the channel state

Example Write

int32_t value[2] = {SA_CTL_MOVE_MODE_CL_ABSOLUTE,
SA_CTL_MOVE_MODE_CL_RELATIVE};
int8_t channel;
for (channel = 0; channel < 2; channel++) {
SA_CTL_Result_t result = SA_CTL_SetProperty_1i32(
dHandle, channel, SA_CTL_PKEY_MOVE_MODE, value [channel]
)
if (result) {
// handle error

2.3.2 Asynchronous Access
This method requires two function calls for getting one property value. One for requesting the
property value and one for retrieving the answer (see figure 2.2).

When the API function is called a command is sent to the device and the function returns im-
mediately, allowing the application to issue another request (or perform other tasks). When the
application has finished performing other tasks (or cannot proceed until the property values are
available) it may call the API function to receive the result.

The advantage of this method is that the application may request several property values in fast
succession and then perform other tasks before blocking on the reception of the results.

Functions Used

SA_CTL_RequestReadProperty, SA_CTL_ReadProperty_1i64,
SA_CTL_RequestWriteProperty_i64, SA_CTL_WaitForWrite

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

Time Host Device
User Code I API
LN Command
1 7| Request Transmission
1 Read
' Property
|
— Command
© 7| Request Transmission
1 Read
1 Property
* 1) 4) 4
Other 1 Command
Tasks 1 Processing
 I— Reply
Transmission
Reply
Transmission
v
Figure 2.2: Asynchronous Property Access
Example Read
SA_CTL_Result_t result;
int64_t valuel[2]; // buffer for values to read
SA_CTL_RequestID_t rID[2]; // buffer for request IDs

int8_t channel;
// issue requests for two channels
for (channel = 0; channel < 2; channel++) {
result = SA_CTL_RequestReadProperty (
dHandle, channel, SA_CTL_PKEY_POSITION, & (rID[channel]), 0
)
if (result) {
// handle error

}

// process other tasks

//
// retrieve results
for (channel = 0; channel < 2; channel++) {

result = SA_CTL_ReadProperty_1i64 (

dHandle, rID[channel], & (value[channel]), 0
)
if (result) {

// handle error

MCS2 Programmer’s Guide n _

2 GENERAL CONCEPTS

Example Write

SA_CTL_Result_t result;
SA_CTL_RequestID_t rIDI[2]; // buffer for request IDs
int8_t channel;
// issue requests for two channels (set position to zero)
for (channel = 0; channel < 2; channel++) {
result = SA_CTL_RequestWriteProperty_i64 (
dHandle, channel, SA_CTL_PKEY_ POSITION, 0, & (rID[channel]), O
)
if (result) {
// handle error
}
}

// process other tasks

/...
// retrieve results
for (channel = 0; channel < 2; channel++) {

result = SA_CTL_WaitForWrite (
dHandle, rID [channel]

)

if (result) {
// handle error

2.3.3 High-Throughput Asynchronous Access

This method is similar to the asynchronous access with the difference that request commands are
bundled (see figure 2.3).

When the API function is called the request is buffered. The function returns immediately and the
command transmission is held back until the buffer is flushed. Again, the application may request
several property values in fast succession and then perform other tasks before blocking on the
reception of the results. In addition, the underlying media is able to combine several requests into
one packet, thus further optimizing communication delays.

Functions Used

SA_CTL_CreateOutputBuffer, SA_CTL_FlushOutputBuffer,
SA_CTL_RequestReadProperty, SA_CTL_ReadProperty_1i64

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

Time Host Device

API

User Code

Create
Output
Buffer

A 4

Request
Read

Property
(buffered)

A 4

Request
Read

a
Property
’bufPered)

Command

Flush Transmission
Output
Buffer

A 4

A 4

Command

Other Processing

Tasks

Reply
Transmission

v

Figure 2.3: High-Throughput Asynchronous Property Access

Example Read

SA_CTL_Result_t result;
int32_t valuel[2]; // buffer for values to read
SA_CTL_RequestID_t rID[2]; // buffer for request IDs
int8_t channel;
// create output buffer
SA_CTL_TransmitHandle_t tHandle;
result = SA_CTL_CreateOutputBuffer (dHandle, &tHandle) ;
if (result) {
// handle error
}
// issue requests for two channels
for (channel = 0; channel < 2; channel++) {
// by passing the transmit handle (instead of zero)
// the request is associated with the output buffer and
// therefore only sent when the buffer is flushed (see below)
result = SA_CTL_RequestReadProperty (
dHandle, channel, SA_CTL_PKEY_POSITION, & (rID[channel]), tHandle
)
if (result) {
// handle error

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

}
}
// flush output buffer
SA_CTL_FlushOutputBuffer (dHandle, tHandle);
// process other tasks

//

// retrieve results

for (channel = 0;channel < 2; channel++) {
result = SA_CTL_ReadProperty_1i64 (

dHandle, rID[channel], & (value [channel]), 0
)
if (result) {

// handle error

2.3.4 Call-and-Forget Mechanism

For property writes the result is only used to report errors. With the call-and-forget mechanism
the device does not generate a result for writes and the application can continue processing other
tasks immediately. Compared to asynchronous accesses, the application doesn't need to keep
track of open requests and collect the results at some point. This mode should be used with care
so that written values are within the valid range.

The call-and-forget mechanism is used by passing a null pointer for the request ID pointer to the
SA_CTI_RequestWriteProperty_x functions.

Functions Used

SA_CTL_RequestWriteProperty_i64
Example Write

SA_CTL_Result_t result;
int8_t channel;
// issue requests for two channels (set position to zero)
for (channel = 0; channel < 2; channel++) {
result = SA_CTL_RequestWriteProperty_i64 (
dHandle, channel, SA_CTL_PKEY_ POSITION, 0, NULL, O
)
if (result) {
// handle error

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

2.3.5 Request Ready Notification

Instead of using the blocking SA_CTL_ReadProperty_x/SA_CTL_WaitForWrite functions to
retrieve the result of an asynchronous request, the event system (see section 2.4 "Event Notifi-
cations") can be used to get a notification once the answer has been received from the device.
After receiving a Request Ready event (see there) the result of the asynchronous operation can be
retrieved without blocking using the functions mentioned above.

Note that the request ready event needs to be enabled using the Event Notification Options prop-
erty.

Example Request

// enable request ready events

result = SA_CTL_SetProperty_132(
dHandle, 0, SA_CTL_PKEY_API_EVENT_NOTIFICATION_OPTIONS,
SA_CTL_EVT_OPT_BIT_REQUEST_READY_ ENABLED

)

if (result) { /% handle error =*/ }

// send asynchronous request
SA_CTL_RequestID_t rID;
result = SA_CTL_RequestReadProperty (
dHandle, 0, SA_CTL_PKEY CHANNEL_STATE, &rID, O
)
if (result) { /% handle error =*/ }

Example Event Processing

SA_CTL_Event_t evnt;
result = SA_CTL_WaitForEvent (dHandle, &evnt, SA_CTL_INFINITE) ;
if (result) { /% handle error =*/ }

if (evnt.type == SA_CTL_EVENT_ REQUEST_READY) {
// extract event data
SA_CTL_RequestID_t rID = SA_CTL_EVENT_REQ READY_ID (evnt.i64);
int requestType = SA_CTL_EVENT_REQ_READY_TYPE (evnt.i64);
int dataType = SA_CTL_EVENT_REQ_READY DATA_TYPE (evnt.i64);

// process read results
if (requestType == SA_CTL_EVENT_REQ_READY_ TYPE_READ) {
size_t arraySize = SA_CTL_EVENT_REQ_READY_ ARRAY_SIZE (evnt.i64);
switch (dataType) {
case SA_CTL_DTYPE_INT32:
{
std: :vector<int32_t> values (arraySize);
result = SA_CTL_ReadProperty_i32 (

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

dHandle, rID, values.data(), &arraySize
) i
if (result) { /#* handle error #*/ }

values.resize (arraySize);
// property data is now stored in values
break;

}
// handle other data types

}

2.4 Event Notifications

In some situations events might occur that require further attention or reactions by the user. To
avoid that the application has to poll the occurrence of such events the MCS2 offers a notification
system. If an event occurs the MCS2 generates a notification event informing about the situation.

The application may receive events using the SA_CTL_WaitForEvent function. It returns events
in form of a pointer to the struct:

typedef struct ({
uint32_t idx;
uint32_t type;
union {
int32_t 132;
inte4d_t 164;
uint8_t unused[24];
bi
} SA_CTL_Event_t;

The fields of the struct have the following meaning:

+ idx holds the source index that the event originated from. This may be a device, module or
channel index, depending on the event type.

* type holds the type of the event. See chapter 5 "Event Reference" for a detailed description
of the events and their parameters.

* 132 /164 / unused are parameter fields that further describe the event. The meaning
depends on the event type.

While the event type indicates "what happened" the event parameter gives a more detailed hint
why the event occurred. Note that the event queue is cleared when connecting to a device. This
means that events which occurred before the connection was established are silently dropped.

MCS2 Programmer’s Guide _

2 GENERAL CONCEPTS

The SA_CTI_Cancel function can be used to abort a waiting SA_CTI_WaitForEvent call. An
event can also be translated into a human readable string by using the SA_CTL_GetEventInfo
function.

Note that all controller events are enabled by default. There is no property to explicitly enable
or disable any specific controller events. Only APl events are disabled by default and need to be
enabled explicitly by configuring the Event Notification Options property.

2.5 Module Overview

Each MCS2 controller consists of one interface module to provide a communication interface (e.g.
USB or ethernet interface) and one or more driver modules to control actuators with different driv-
ing principles (e.g. stick-slip piezo actuators or magnetic driven positioners). Each driver module
has a specific number of channels and optionally may carry an I/0 module for auxiliary inputs and
outputs. One sensor module per driver is required to connect the positioners to the controller. An
optional hand control module may be integrated in the main controller or placed inside a sepa-
rate housing to be connected to the main controller. Figure 2.4 shows the device structure on the
example of a controller with two driver modules. Please refer to the MCS2 User Manual for more
information about the hardware components of the MCS2 system.

PC
Stage 1
Actuator M T
UsB or | Driving °
1gn
Ethernet] Sensor gnals o
Interface [« [Module1 |« od|o
K Analog °
g MCS2 |3 Sensor o
3 § Data .
=
’ 1/0 Module (optional) I
— Stage 2
Lk H :
B . °
Auxiliary Inputs and Outputs Sensor _—
o0 yine P Module 2 4—@ o @
® 060 o

Hand Control
Module (optional)

Figure 2.4: MCS2 Device Structure
It may be useful for an application to know the type of the channel or module e.g. to decide if
a specific feature may be used. The Module Type and Channel Type properties return the type
code of the module and channel. Although the type of the interface is usually well known when

connecting to a device (the device locator reflects the type of interface) it may be read with the
Interface Type property.

The following modules are of interest for the programming of the MCS2:

2.5.1 USB Interface

MCS2 devices with USB interface (SA_CTL_INTERFACE_USB)support the binary SmarActCTL pro-
tocol. The USB interface does not need any interface configuration.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

2.5.2 Ethernet Interface

MCS2 devices with ethernet interface (SA_CTL_INTERFACE_ETHERNET)support the binary Smar-
ActCTL protocol as well as a SCPI oriented ASCII protocol. See section 6 "ASCII Interface" for more
information. The ethernet interface must be configured with an IP configuration to match the
users network settings. See section 2.1.4 "Network Interface Configuration" for more information.

2.5.3 Stick-Slip Piezo Driver

The Stick-Slip Piezo Driver module (SA_CTL_STICK_SLIP_PIEZO_DRIVER) allows to drive three
piezo driven stick-slip positioners. These positioners have the following features and require-
ments:

* The positioners may be commanded to perform open-loop movements (Scanning and Step-
ping) and closed-loop movements. (The positioners must be equipped with integrated sen-
sors to perform closed-loop movements).

+ Stick-Slip piezo actuators are self-locking. This means that they hold their position roughly
without applying any driving signals to the actuator.

*+ The positioner type must be configured manually to the channel according to the connected
positioner. See section 2.6 "Positioner Types" for more information.

« The amplifier of the driver channel is enabled and the channel is in the stopped state at
startup. Commanding a closed-loop movement enables the control-loop. See section 2.7
"Moving Positioners" for more information.

+ The channel may be instructed to actively hold the target position after it has been reached.
(See Hold Time property.) After the hold time elapsed the channel is stopped.

+ Closed-loop movements may be commanded without and with velocity control (and addi-
tionally acceleration control). If no velocity is defined the maximum positioner speed is lim-
ited only by the max closed-loop frequency (See Max Closed Loop Frequency property.)

* The sensor power-save mode may be used to reduce the generated thermal load of the
positioner while resting for the operation in temperature critical environments. See section
2.11 "Sensor Power Modes" for more information.

2.5.4 Magnetic Driver

The Magnetic Driver module (SA_CTL_MAGNETIC_DRIVER) allows to drive three brushless per-
manent magnet positioners. These positioners have the following features and requirements:

* Integrated sensors are required for the operation of these positioners. The sensor feedback
is used for the electronic commutation (phasing) as well as to perform closed-loop move-
ments. Open-loop movements are not available.

* Magnetic positioners are not self-locking. This means that they require the control-loop to
be enabled to continuously update the driving signals and to actively hold their position.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

* SmarAct positioners are equipped with the SmarAct Positioner ID System. The positioner
type is automatically detected and configured when the positioner is attached to a channel.
See section 2.6 "Positioner Types" for more information.

* In general the amplifier is disabled at startup and must be explicitly enabled before being
able to perform closed-loop movements. This also implicitly starts the phasing sequence of
the positioner. See section 2.22 "Phasing of Magnetic Driven Positioners" for more informa-
tion. Alternatively the channel may be configured to automatically enable the amplifier on
startup. (See Startup Options property.)

+ All movements require the velocity and acceleration control to be active to define the velocity
resp. the acceleration with which the closed-loop movement is performed. See section 2.7.4
"Closed-Loop Movements" for more information.

2.6 Positioner Types

The positioner type gives the controller information about how to
calculate positions, handle the referencing, configure the control- MCS2

)

|00p, etc. ChO Positioner Type S

The MCS2 controller provides sets of standard configuration pa- e
. . L Ch1 Positioner Type

rameters for all kinds of SmarAct positioners. For the majority of N

SRxS1S6S v

Ch2 Positioner Type

Note that the positioner type is represented by a generic type code
instead of the descriptive name string. The descriptive name may ~————
be read with the Positioner Type Name property. Furthermore,

the Tuning and Customizing Properties may be used to read addi-

tional information of the configured positioner type.

applications these predefined types are sufficient.

NOTICE

When the positioner type of a channel is changed (by manual configuration or by

automatic detection), the channel must be calibrated to ensure proper operation
of the positioner. See section 2.7.1 "Calibrating" for more information.

The sensor module provides the appropriate supply voltage for the integrated sensors of the po-
sitioners according to the configured positioner types. Note that this supply voltage configuration
is global for all channels of a sensor module.

MCS2 Programmer's Guide O

2 GENERAL CONCEPTS

NOTICE
When using positioners with M- or L-sensor on at least one channel of a specific
driver module all positioner types of this module must be set to a M- or L-sensor

type too to configure the correct sensor supply voltage. This rule applies even if
the other channels of the driver module are unused, respectively no positioners
are connected.

Please refer to the MCS2 Positioner Types document for a list of available positioner types.

2.6.1 Manual Positioner Type Configuration

For positioners that are not equipped with the SmarAct positioner ID system the channel must
be configured with the type of positioner that is connected. To configure a positioner type to a
channel simply set the Positioner Type property.

Each channel stores the positioner type setting to non-volatile memory. Consequently, there is no
need to configure the positioner type for each session. Only when changing the physical setup
(switching positioners etc.) the channel must be reconfigured (and calibrated) again.

2.6.2 Automatic Positioner Type Configuration

The MCS2 automatically configures the Positioner Type for positioners that are equipped with the
SmarAct Positioner ID System when attaching it to the channel. Additionally, the controller will
generate a corresponding Positioner Type Changed event. The event parameter or the Positioner
Type property provide the type that was automatically configured. The Positioner Type property
can also be used to select custom positioner types. (See next section for more details on custom
positioner types.)

Note that the channel must be calibrated once again after the positioner type was changed by the
automatic detection.

2.6.3 Custom Positioner Types

In special cases it might be necessary to modify tuning parameters of a positioner type to adapt to
an application perfectly. The MCS2 controller offers this possibility by giving access to the tuning
parameters. Once the tuning is finished the set of parameters may be saved to a custom positioner
type slot. As a safety feature, all tuning properties are write protected by default. This prevents
accidental modification of any parameters. A special key must be written to the Positioner Write
Protection property to unlock the write access to the tuning properties. As long as the write pro-
tection is active, writing to a tuning property will return a SA_CTL_ERROR_PERMISSION_DENIED
error.

Custom positioner type slots are also used to define the control-loop parameters in case an aux-
iliary input is used as feedback signal for the control-loop. Refer to section 2.19.5 "Using Analog
Inputs as Control-Loop Feedback" for more information.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

Creating Custom Positioner Types

When tuning a positioner type the first step should be to select one of the predefined positioner
types to act as a template. Note that this step is important to define several internal parameters
which are not user accessible. The predefined positioner type defines e.g. the sensor type (S, L, M,
etc.) and sensor supply voltage as well as the position calculation parameters. (Positioners that
support the SmarAct Positioner ID System automatically set the appropriate type when attaching
it to the channel.) After this, tuning parameters may be modified. As long as the modified posi-
tioner type was not saved to a custom slot, the positioner type is read as 0 to indicate that the
modifications are volatile. (The Positioner Type Name property returns ‘modified’ in that case.)
Powering down the device in this state will discard the changes made. To save the modified set
of parameters use the Save Positioner Type property. This will save the settings to one of four
custom positioner type slots and set the Positioner Type to the new custom type implicitly.

CAUTION

Configuring inappropriate values may result in unstable or unexpected behavior

of the positioners and potential damage of the stage. Custom tuning must be
used with caution!

The available properties for customizing a positioner type are described in section 4.9 "Tuning and
Customizing Properties".

Automatic Positioner Type Configuration

If the Positioner Type is automatically detected and configured when attaching the positioner to
the channel (e.g. for magnetic driven positioners) the appropriate template type for the custom
tuning is set automatically too. After tuning the parameters the positioner configuration may be
saved to to one of the four custom positioner type as described above. This implicitly sets the
Positioner Type to the new custom type.

To return to the predefined (and automatically detected) type the Positioner Type property must
be set to the special value SA_CTI,_POSITIONER_TYPE_AUTOMATIC (299). This configures the
predefined type and sets the Positioner Type to this type implicitly. Note that the channel must be
calibrated again after changing the positioner type to ensure proper operation of the positioner.
See section 2.7.1 "Calibrating" for more information.

Note that the write access to the Positioner Type property is restricted to custom positioner types
and to the special automatic positioner type value.

2.7 Moving Positioners

There are several commands available that induce a movement of a positioner (movement com-
mands). Mainly these are:

+ Calibrating (SA_CTL_Calibrate).

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

+ Referencing (SA_CTI_Reference).

* Moving (SA_CTL_Move). Depending on the configured Move Mode this command covers:

- Open-loop movements (Scanning and Stepping for piezo-driven positioners)

- Closed-loop movements
+ Stopping (SA_CTL_Stop).

These commands are described in the following sections.

Generally, the base unit for position values is pico meters (pm) for linear positioners and nano
degrees (n°) for rotary positioners.

NOTICE

API functions that involve movement of positioners (such as SA_CTL_Move,
SA_CTL_Calibrate and SA_CTL_Reference) are always sent to the de-
vice asynchronously. Therefore, these functions do not return an acknow-
ledge or error directly. Instead, the movement commands will always gen-

erate a SA_CTL_EVENT_MOVEMENT_FINISHED event where the event pa-
rameter indicates success or failure. For example, if a closed-loop move-
ment could not be started due to a missing sensor, the event parameter will
be SA_CTL_ERROR_NO_SENSOR_PRESENT. See See section 2.7.7 "Movement
Feedback" for more information.

2.7.1 Calibrating

Even though every positioner is categorized by its type (which is configured to the channel via
the Positioner Type property, see also section 2.6 "Positioner Types") each individual positioner
may have slightly different characteristics that require the tuning of some internal parameters for
correct operation and optimal results.

The SA_CTI_Calibrate function is used to adapt to these characteristics and automatically de-
tects parameters for an individual positioner. It must be called once for each channel if the me-
chanical setup changes (different positioners connected to different channels). The calibration
data will be saved to non-volatile memory. If the mechanical setup is unchanged, it is not nec-
essary to run the calibration on each initialization, but newly connected positioners have to be
calibrated in order to ensure proper operation.

The calibration routine is only executable by a positioner that has a sensor attached to it. The
sensor must also be enabled or in power save mode (see the Sensor Power Mode property). Oth-
erwise the SA_CTIL_EVENT_MOVEMENT_FINISHED event that is generated by the channel will
hold an error code as parameter. The calibration takes a few seconds to complete. During this
time the Channel State bit SA_CTL_CH_STATE_BIT_CALIBRATING is set.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

CAUTION

As a safety precaution, make sure that the positioner has enough freedom to
move without damaging other equipment.

Before calling the SA_CTL_cCalibrate function the Calibration Options property should be con-
figured to define the behavior of the calibration sequence. This property holds a bit mask which is
outlined in the following table.

T Short Description

0 Direction Defines the direction in which the positioner will move
for calibration purposes. The movement is started in
backward direction if this flag is set.

1 Detect Distance Code Inversion Activates a special mode that detects the individual
setup of positioners with multiple reference marks.
For normal calibration this bit should be set to 0.

2 Advanced Sensor Correction’ Activates a calibration routine to compensate periodic
Sensor errors.

8 Limited Travel Range’ Allows more than one endstop while calibrating.
Should be used for positioners with limited travel
range, e.g. micro grippers.

Undefined flags are reserved for future use. These flags should be set to zero.

Signal Correction Calibration (calibration options 0x00 or 0x01)

During this calibration routine the positioner will perform a movement of up to several mm in
the configured direction to optimize the position calculation for the sensor signals of the posi-
tioner. Also the direction sense between sensor and actuator is determined (and automatically
adjusted) by this routine. This is required for a proper operation of the control-loop. The signal
correction calibration should not be started near a mechanical end stop. Nonetheless the calibra-
tion sequence automatically detects an endstop and reverts the movement direction to continue
the calibration in the opposite direction. If more than one endstop is detected the calibration
sequence is aborted with an error.

Some positioners (e.g. micro grippers) have a very limited travel range. For these positioners the
movement distance may be too small to successfully finish the calibration.

The SA_CTI,_CALIB_OPT_BIT_LIMITED_TRAVEIL_RANGE calibration options flag may be used
to increase the number of allowed endstops while calibrating.” The calibration sequence then
moves back and forth between the two endstops to perform the signal corrections.

Positioners that are referenced via a mechanical end stop (see section 2.8.4 "Positioners With
Endstop Reference") are moved to the end stop as part of the calibration routine. For this move-
ment the configured Move Velocity and Move Acceleration are used.

"This option is only applicable for Stick-Slip Piezo Driver.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

Which end stop is used for referencing is defined by the configured Safe Direction instead of the
direction bit of the Calibration Options property. Note that when changing the Safe Direction the
end stop must be calibrated again for proper operation.

As a safety precaution, make sure that the positioner has enough freedom to move without dam-
aging other equipment.

Once the calibration has finished successfully the SA_CTL_CH_STATE_BIT_IS_CALIBRATED bit
of the Channel State property is set.

Note that Magnetic Driver channels must be calibrated in order to perform movements. Calling
the SA_CTL_Move or SA_CTL_Reference function will otherwise generate a "movement fin-
ished" event with its parameter set to SA_CTL_ERROR_NOT_CALIBRATED.

Distance Code Inversion Detection (calibration options 0x02 or 0x03)

This calibration routine may be used to correct the absolute position calculation when referencing
positioners with multiple reference marks. In rare cases the reference algorithm may produce
faulty results due to a reference coding mismatch. These situations may be resolved by executing
this calibration routine.

Advanced Sensor Correction Calibration (calibration options 0x04 or 0x05)’

This calibration routine is used to improve the absolute sensor accuracy by compensating the pe-
riodic sensor error. A calibration sequence is needed to generate a compensation table which is
stored in the controller. This calibration must be performed for every channel that should use the
advanced sensor correction. During this calibration routine the positioner will perform a move-
ment of up to several mm in the configured direction. The compensation may then be activated by
setting the SA_CTL_SIGNAL_CORR_OPT_BIT_ASC bit of the Signal Correction Options property.

NOTICE

The advanced sensor correction needs a feature permission to be activated on

the controller. See section 2.23 "Feature Permissions" for more information.

2.7.2 Referencing

The sA_CTL_Reference function may be used to instruct a positioner to determine its physical
position. It will start to move in the configured search direction and look for a reference. The
positioner must have a sensor attached to it and the sensor must be enabled or in power save
mode in order to perform the referencing sequence (see the Sensor Power Mode property).

Depending on the reference strategy (which is partly predefined by the positioner type and partly
configurable) as well as the individual positioner, the referencing takes some time to complete.
During this time the Channel State bit SA_CTL_CH_STATE_BIT_REFERENCING is set. In case the

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

reference could not be found the SA_CTI,_EVENT_MOVEMENT_FINISHED event that is generated
by the channel will hold an error code as parameter.

Before calling the SA_CTL_Reference function the Referencing Options property can be con-
figured to define the behavior of the reference sequence. This property holds a bit mask with
several options that influence the strategy of how to find the reference. Please refer to section
2.8.1 "Reference Marks" for more information.

The velocity and acceleration for the referencing movement may be specified with the Move Veloc-
ity and Move Acceleration properties. To guarantee that the reference mark can be found securely
the maximum allowed velocity is limited and may be lower than for regular closed-loop move-
ments. Since the limit is quite high this is usually not a restriction. The actual maximum value
depends on the positioner type. (E.g. 125 mms™' for a linear positioner with S-sensor.) However,
if a higher move velocity is configured when starting the referencing the value is temporary limited
by the controller.

Note that reference movements (when successful) generate two events. One when the reference
position has been determined and one after the positioner has come to a stop. The first event is
mainly useful when using the Continue On Reference Found feature (see section 2.8.1 "Reference
Marks").

Once the channel "knows" its physical position the SA_CTL_CH_STATE_BIT_IS_REFERENCED
bit of the Channel State property is set.

2.7.3 Open-Loop Movements

There are two types of open-loop movement:”

« Scan movements allow to control the deflection of the piezo element of the positioner directly.
To perform scan movements the Move Mode property must be set to one of the values
SA_CTL_MOVE_MODE_SCAN_ABSOLUTE or SA_CTL_MOVE_MODE_SCAN_RELATIVE.

The scan velocity may be specified with the Scan Velocity property. The SA_CTL_Move func-
tion must be called to start the actual scan movement. The move value parameter of the
SA_CTL_Move function is then interpreted as target scan position to which to scan to, re-
spectively scan target increment in case of relative scan movement. The valid range for
the scan position is 0 ...65535 for absolute scan positions and -65535 ...65535 for rela-
tive scan increments. Note that for relative scan movements the movement will stop at the
boundary if the resulting absolute scan target exceeds the valid range.

+ Step movements allow to perform a burst of steps with the given frequency and amplitude.
To perform step movements the Move Mode must be set to SA_CTI,_MOVE_MODE_STEP.
Frequency and amplitude of the generated output signal may be specified with the proper-
ties Step Frequency and Step Amplitude. The SA_CTL_Move function must be called to start
the actual step movement. The move value parameter of the SA_CTL_Move function is then
interpreted as number of steps. The sign of the value codes the movement direction. The
valid range for the step parameter is =100000...-1 and 1 ...100 000.

The Channel State bit SA_CTL_CH_STATE_BIT_ACTIVELY_ MOVING is setwhile performingscan
or step movements.

*Note that open-loop movements are not available for Magnetic Driver.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

2.7.4 Closed-Loop Movements

In order to perform a closed-loop movement the positioner must have a sensor attached to it.
The sensor must also be enabled or in power save mode (see the Sensor Power Mode property).
If this is not the case the SA_CTL_EVENT_MOVEMENT_FINISHED event that is generated by the
channel will hold an error code as parameter. Furthermore the amplifier must be enabled (see
the Amplifier Enabled property).

Before calling the SA_CTL_Move function the Move Mode property must be set to one of the
following values:

* SA_CTL_MOVE_MODE_CL_ABSOLUTE In this mode the move value that is passed to the
SA_CTL_Move function is interpreted as the new absolute target position the positioner
should move to.

* SA_CTL_MOVE_MODE_CL_RELATIVE In this mode the move value that is passed to the
SA_CTL_Move function is added to the current (target) position. The move value of 0 has a
special meaning in this mode: the channel aborts an ongoing movement and actively holds
the current position.

The valid range for the position is =100 x 10'%...100 x 10'? pm or n°.

Additionally, the following properties may be configured to modify the behavior of the closed-loop
movement (see also the detailed property descriptions in chapter 4):

+ Move Velocity and Move Acceleration
These properties define the velocity resp. the acceleration with which the closed-loop move-
ment is performed.

If the move velocity is set to zero (only for Stick-Slip Piezo Driver) then the velocity control is
disabled and the positioner moves to the target position as fast as possible, more precisely,
only limited by the maximum closed-loop frequency (see Max Closed Loop Frequency).

Likewise, if the acceleration is set to zero (only for Stick-Slip Piezo Driver) then the acceler-
ation control is disabled and the positioner accelerates and decelerates as fast as possible
(only limited by mechanical factors).

+ Control Loop Input
This property defines the feedback signal for the control-loop.

- SA_CTL_CONTROIL_LOOP_INPUT_DISABLED The closed-loop operation is disabled.
A SA_CTL_ERROR_CONTROL_LOOP_INPUT_DISABLED error will be generated when
trying to command a closed-loop movement.

- SA_CTL_CONTROL_LOOP_INPUT_SENSOR The channel uses the integrated sensor of
a positioner to calculate the current position. This position is used as input signal for
the control-loop to allow closed-loop position control.

- SA_CTL_CONTROL_LOOP_INPUT_AUX_IN The input signal of an auxiliary input (e.g.
an analog input of an MCS2 |0 module) is used as control-loop input.

MCS2 Programmer's Guide O

2 GENERAL CONCEPTS

+ Positioner Control Options
This property defines several options that apply to closed-loop movements. The property
value is a bit field containing the following independent flags:

=] Short Description

0 Accumulate Relative Position Disabled Disables the relative position accumula-

tion.

1 NoSlip' Forbid the execution of actuator slips
(steps).

2 No Slip While Holding' Forbid the execution of actuator slips
(steps) only while holding the target po-
sition.

3 Forced Slip Disabled'3 Disables the forced slip feature.

4 Stop On Following Error Stop positioner if a following error was
detected.

5 Target To Zero Voltage'3 The driver output voltage is forced to

zero while retaining the target position
after a closed-loop movement.

6 CL Disable On Following Error? Disable control-loop if a following error
was detected.

7 CL Disable On Emergency Stop? Disable control-loop if an emergency
stop was triggered.

Undefined flags are reserved for future use. These flags should be set to zero.

The flags have the following meaning:

Accumulate Relative Positions Disabled (Bit 0) This flag affects the behavior of a posi-
tioner if a relative position command is issued before a previous one has finished. If
relative position commands are to be accumulated (bit cleared, default) then all new
relative position commands are added to the previous target position. Otherwise (bit
set) the movement is executed relative to the position of the positioner at the time of
command arrival.

Example: Say the positioner is currently at its zero position. Two relative movement
commands are issued in fast succession both with +1 mm as relative target. With accu-
mulation enabled (default) the final position will be 2 mm. With accumulation disabled
the final position will vary (e.g. 1.12mm) depending on when the second command
arrives at the controller.

No Slip (Bit 1)! If this flag is set the actuator driving signal generation will never generate
slips (steps). This means that only scan movement in the range of the piezo is per-
formed for targeting. It might be useful for applications where the vibration of the
piezo slip is unwanted, e.g. while approaching to a probe in the sub micrometer range.

'This option is only applicable for Stick-Slip Piezo Driver.
2This option is only applicable for Magnetic Driver.
3This option has no effect for dual-piezo hybrid positioners.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

No Slip While Holding (Bit 2)! This flag affects the behavior of a positioner if it is instructed
to hold the target position after reaching it (see the Hold Time property). The piezo de-
flection will be adjusted automatically to hold the position. Additionally it may become
necessary to do further steps to hold the position if the deflection of the piezo reaches
a boundary. However, if this is not desired, this flag may be used to forbid the execution
of steps even if this means that the position can not be held. Note that this flag has no
effect if the No Slip flag (Bit 1) or the Target To Zero Voltage flag (Bit 5) is active.

Forced Slip Disabled (Bit 3)"> When reaching a target position the channel will try to stop
at approx. 50% of its step size, thus improving the holding feature. This is achieved by
forcing a slip, just before reaching the target position. If this behavior is unwanted it
can be disabled with this flag.

Stop On Following Error (Bit 4) This flag defines if a closed-loop movement should be stop-
ped as soon as the configured following error is exceeded. Magnetic driven positioners
enter the holding state to stop the ongoing movement in this case. Note that this flag
has no effect for movements without velocity control, if the Following Error Limit is set
to zero or if the CL Disable On Following Error flag (Bit 6)? is active.

Target To Zero Voltage (Bit 5)'3 If this flag is set a special holding sequence is started af-
ter a target position was reached. The controller will then perform several piezo scan
operations to force the output voltage to zero while retaining the target position. This
feature is e.g. useful for applications where the positioner should be moved to a spe-
cific target position and then should be disconnected from the controller without ad-
ditional movement of the positioner carriage. (Which usually happens due to the con-
traction of the piezo element while discharging from the holding voltage.) Note that the
hold threshold for this feature may be configured with the Target To Zero Voltage Hold
Threshold property. If a Hold Time is specified the sequence is repeated whenever the
difference between current position and target position exceeds the configured hold
threshold.

CL Disable On Following Error (Bit 6)> This flag defines if the control-loop should be dis-
abled instead of just stopping the movement as soon as the configured following error
is exceeded while performing a movement or while actively holding the position. Note
that disabling the control-loop removes any holding force from the positioner and thus
must be used with caution.

CL Disable On Emergency Stop (Bit 7)> This flag defines if the control-loop should be dis-
abled instead of just stopping the movement as soon as an emergency stop was trig-
gered. See section 2.20.2 "Emergency Stop Mode" for more information. Note that dis-
abling the control-loop removes any holding force from the positioner and thus must
be used with caution.

+ Max Closed Loop Frequency”
Generally, the channel will not drive the positioner with frequencies above the maximum
allowed frequency. If the maximum frequency is set too low for a certain move velocity, then
the move velocity might not be reached or held. In this case the maximum frequency must
be increased. Be aware that different positioners reach different velocities. If a positioner
is not able to move as fast as the configured move velocity, then the driver will cap at the
maximum driving frequency.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

* Hold Time"

The channel may be instructed to hold the target position after it has been reached. This
may be useful to compensate for drift effects and the like. The positioner will implicitly
adjust the deflection of the piezo to hold the position if needed. When the piezo element
of the positioner reaches a boundary a single step is performed. While holding the position
the Channel State bit SA_CTL_CH_STATE_BIT_CLOSED_LOOP_ACTIVE is set and the bit
SA_CTL_CH_STATE_BIT_ACTIVELY_MOVING is cleared. After the hold time elapsed the
channel is stopped.

Note that the closed-loop movement is considered finished as soon as the target position is
reached and not when the optional hold time has elapsed.

The endstop detection is still active in holding state. If a positioner is moved away from
the target position by external forces and the channel is not able to hold the target position
for a longer time an endstop is triggered. A SA_CTIL_EVENT_HOLDING_ABORTED event is
generated to notify about this and the channel is stopped.

+ Actuator Mode”
This mode defines the type of actuator driving signal generation.

- SA_CTL_ACTUATOR_MODE_NORMAL The normal mode is the default mode. It offers
open-loop step movement as well as closed-loop movement.

- SA_CTL_ACTUATOR_MODE_QUIET The quiet mode only allows to perform closed-loop
movement and reduces the noise that is emitted from the positioners while moving. It
is useful in applications where the noise emission is disturbing. The trade-off between
the quiet and the normal mode is the higher (generated) thermal load of the controller
in quiet mode. For this reason the quiet mode is not recommended for continuous
operation.

- SA_CTL_ACTUATOR_MODE_LOW_VIBRATION The low vibration mode allows to per-
form closed-loop movements which produce as little vibrations as possible. It is useful
for applications where the high-frequent vibrations of the stick-slip driving principle
cause troubles.

NOTICE

The low vibration mode needs a feature permission to be activated on the

controller. See section 2.23 "Feature Permissions" for more information.

Once configured, call the SA_CTL_Move function to start the actual movement. While executing
a closed-loop movement the Channel State bits SA_CTL_CH_STATE_BIT_ACTIVELY_MOVING
and SA_CTL_CH_STATE_BIT_CLOSED_LOOP_ACTIVE are set.

*This property is only available for Stick-Slip Piezo Driver.

MCS2 Programmer’s Guide _

2 GENERAL CONCEPTS

2.7.5 Stopping Movements

The sA_CTL_stop function stops any ongoing movement. The exact behavior of the different
channel types is described in the following sections.

A digital input of an I/0 module may be used to issue an emergency stop of all channels. See
section 2.20.2 "Emergency Stop Mode" for more information.

Stick-Slip Piezo Driver

The sA_CTL_Stop function disables the control-loop and also stops the hold position feature of
a closed-loop command.

To command the channel to abort an ongoing movement and actively hold the current position
("enter holding"), set the Move Mode property to SA_CTL_MOVE_MODE_CI,_RELATIVE and issue
a SA_CTL_Move command with its move value parameter set to zero. The Hold Time property
must be set to a non-zero value, otherwise the channel is stopped without actively holding the
position. This command sequence may also be used to bring the channel from the stopped into the
holding state to actively hold the current position without effectively commanding a movement.

For movements with enabled acceleration control (see Move Acceleration) a "stop" command in-
structs the positioner to come to a halt by decelerating to zero velocity before stopping. A second
"stop" command triggers a hard stop.

Magnetic Driver

The SA_CTL_Stop function instructs the positioner to come to a halt by decelerating to zero
velocity according to the configured Move Acceleration before entering the holding state. A second
"stop" command triggers a hard stop by immediately entering the holding state at the current
position. The SA_CTL_Move command with its move value parameter set to zero (and the Move
Mode property setto SA_CTL_MOVE_MODE_CL_RELATIVE) also leads to a hard stop by entering
the holding state at the current position.

To disable the control-loop (and remove the holding force from the positioner) set the Amplifier
Enabled property to SA_CTL_DISABLED (0x00).

2.7.6 Overwriting Movement Commands

Generally, the function calls for movement commands (SA_CTL_Move, SA_CTL_Calibrate,
SA_CTIL_Reference) return as soon as the command has been transmitted to the hardware;
the calls do not block as long as the command is in execution. Therefore, the software is free to
issue new commands to the hardware (potentially to other channels) while the movement is being
performed. In particular, new movement commands may also be sent to the same channel at
any time. This will cause the previous movement command to be implicitly aborted. Note that
there is no need to explicitly stop a channel before sending a new movement command. The new
command will simply overwrite the current one.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

Note on working with events: Overwriting movement commands (sending movement com-
mands before the command finished event of the previous command has arrived) leads to a race
condition. The second command might arrive just before the first has completed, thus, only one
command complete event is generated (when the second command completes). However, if the
second command arrives just after the first has completed, two command complete events are
generated (one for each command).

Note on working with a Hand Control Module: Special care must be taken when using a hand
control module and a software running on a PC at the same time. The hand control module
sets several movement relevant properties (like move velocity, move acceleration, hold time, step
frequency, step amplitude, etc.) prior to commanding a movement command. Thus user software
must not rely on previously configured parameters since they may have been modified in the
meantime by the hand control module. To be on the safe side, user software may set the Hand
Control Module Lock Options property to disable the control inputs of the hand control module
while its operation.

2.7.7 Movement Feedback

Movement commands are generally executed asynchronously by the device. Particularly, the API
functions do not block for the duration of the execution of the movement. Instead, the functions
simply trigger the start of the movement and the software may perform other tasks while the
positioner is in motion (e.g. tracking the movement and continuously display the current position).

When issuing movement commands it is usually desirable to know if the movement could suc-
cessfully be started and especially when the controller has finished the movement (e.g. found the
reference mark, reached the target position, etc.). Generally, there are two methods of acquiring
this information:

+ Polling the Channel State property
* Listening to events

Polling

The Channel State property always indicates the current state of the channel. It may be used to
check whether the positioner is moving, holding, stopped etc. The four lower state bits are of in-
terest in this context. The following table summarizes the valid combinations and their meanings:

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

Bit 3 Bit 2 Bit 1 Bit 0 Activity
Referencing Calibrating Closed Actively
Loop Active Moving
0 0 0 0 Stopped / Control-loop disabled
0 0 0 1 Performing an open-loop movement
(stepping or scanning) or phasing
sequence
0 0 1 0 Holding the current target position
(after a closed-loop movement)
0 0 1 1 Performing a closed-loop movement
(moving to target position)
0 1 0 1 Performing a calibration sequence
1 0 1 1 Performing a reference sequence

Since movement commands are always sent asynchronously to the device, they do not return an
acknowledge or error directly. Instead, events are generated. (See next section.)

If event notifications are not used, the success or failure of a movement command may be deter-
mined by monitoring the SA_CTL_CH_STATE_BIT_MOVEMENT_FAILED bit of the Channel State
property. The flag is set to zero if the movement could successfully be started. If the flag is read as
one an error occurred. The movement could not be started or the execution failed. The reason for
the failure may then be determined by reading the Channel Error property. Note that the channel
error is reset to SA_CTL_ERROR_NONE by reading the property.

Further state flags may be monitored to indicate if the execution of a movement could not finish.
(E.g. if an endstop was detected while executing the movement). Their meaning is described in
section 2.10.3 "Channel State Flags".

Events

Generally, every movement command (including calibrating and referencing) generates an event
of type SA_CTL_EVENT_MOVEMENT_FINISHED when the execution has finished. Note that a
movement is also considered as "finished" if it could not be started due to an error, e.g. an invalid
parameter or a closed-loop movement could not be executed, because the sensor is offline. In
any case the event parameter will indicate the result of the movement execution. The following
event parameters are possible:

Table 2.1 - Movement Finished Event Parameters

SA_CTL_ERROR_NONE The movement finished with no error. In this case
the event occurs at the time when the movement
has finished, e.g. when reaching the target posi-
tion.

Continued on next page

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

Table 2.1 - Continued from previous page

SA_CTL_ERROR_INVALID_PARAMETER

SA_CTL_ERROR_ABORTED

SA_CTL_ERROR_NO_SENSOR_PRESENT,
SA_CTL_ERROR_SENSOR_DISABLED

SA_CTL_ERROR_POWER_SUPPLY_DISABLED,
SA_CTL_ERROR_AMPLIFIER DISABLED

SA_CTL_ERROR_END_STOP_REACHED

SA_CTL_ERROR_FOLLOWING_ERR_LIMIT

SA_CTL_ERROR_RANGE_LIMIT_REACHED

SA_CTL_ERROR_BUSY_STREAMING

SA_CTL_ERROR_NOT_PHASED

SA_CTL_ERROR_NOT_CALIBRATED

SA_CTL_ERROR_POSITIONER_FAULT

SA_CTL_ERROR_POSITIONER_OVERLOAD

The movement could not be executed because a
parameter was invalid.

The movement was started, but then aborted by
a stop command. In this case the event occurs
at the time the controller received the stop com-
mand.

The closed-loop movement could not be started,
because no sensor is (currently) available.

The movement could not be started, because the
power supply / amplifier is disabled.

The closed-loop movement was started, but could
not be finished normally, because an end stop was
encountered.

The closed-loop movement was started, but could
not be finished normally, because an following er-
ror limit was exceeded.

The closed-loop movement was started, but could
not be finished normally, because a range limit
was reached.

The movement could not be started, because the
channel is currently participating in a trajectory
stream.

The movement could not be started, because the
channel is not phased.

The movement could not be started, because the
channel is not calibrated.

The movement could not be started, because the
channel has detected a positioner fault and the
amplifier was disabled.

The movement could not be started, because the
channel detected a thermal overload of the po-
sitioner and the closed-loop operation was dis-
abled.

The full list of error codes may be found in the appendix A.1 "Error Codes".

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

2.8 Defining Positions

Since position calculation is done on an incremental basis, the MCS2 controller has no way of
knowing the physical position of a positioner after a system power-up. It simply assumes its start-
ing position as the zero position.

However, in many applications it is convenient to define a certain physical position as the zero
position. The Position property may be set for this purpose. It defines the current position to have
an arbitrary value. This can be the zero position or any other position (it is possible to have the
zero position outside the complete travel range of the positioner).

Figure 2.5 shows an example of a linear positioner. (a) shows the situation after a system power-
up. The positioner assumes its current position as zero. (b) shows the situation after the Position
property was set. The current position has been defined to +3mm and the measuring scale is
shifted accordingly.

5 4-3-2-1012 3 435
« >

<

Scale :-2-1012345678k

©_ 0.0 © ©_ 0.0 ©
oOo0Oo0O0 ocOQo0Oo0OoO0
© © © © © © © ©

Current Position: Omm Current Position: 3mm
(a) (b)
Figure 2.5: Scale Shift

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

2.8.1 Reference Marks

In the example above the physical position of a positioner must be determined by some external
method and then configured to the system. Moreover, this procedure must be done on every
system power-up.

To overcome this inconvenience the SA_CTI_Reference function may be used to determine the
physical position in an automated fashion. After this the controller will return position values ac-
cording to the positioners physical measuring scale (but see section 2.8.5 "Shifting the Measuring
Scale").

Regarding the referencing, positioner types fall into one of three possible categories:

+ Single Reference Marks The reference mark of positioners with a single mark is usually
located near the middle of the travel range. The positioner will have to move to this mark in
order to know its physical position.

* Multiple Reference Marks Positioners of this type may calculate their physical position
by measuring the distance between two adjacent marks. This has the advantage that the
positioner typically only has to move a few milli meters before knowing its physical position
which is exceptionally useful when using positioners with very long travel ranges.

+ Endstop Reference Type Positioners without any reference marks may use the mechanical
endstop at the end of their travel range as a known physical position.

The behavior of the positioner while referencing depends on the positioner type that is attached
to the channel (see Positioner Type property) as well as the configured referencing options (see
Referencing Options property). The referencing options modify the behavior of the referencing
algorithm. Currently, the following bits are available:

Table 2.2 - Referencing Options Bits

BTN R Short Description

0 Start Direction Defines the direction in which the positioner will start
to look for a reference. The movement starts in back-
ward direction if this flag is set.

1 Reverse Direction Only relevant for positioners that have multiple refer-
ence marks. Will reverse the search direction as soon
as the first reference mark is found.

2 Auto Zero The current position is set to zero upon finding the
reference position.

3 Abort On End Stop Will abort the referencing on the first end stop that is
encountered.

4 Continue On Reference Found Will not stop the movement of the positioner once

the reference is found. The positioner must be
stopped manually.

Continued on next page

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

Table 2.2 - Continued from previous page

B Short Description

5 Stop On Reference Found Will stop the movement of the positioner immedi-
ately after finding the reference.

6..31 Reserved These bits are reserved for future use.

NOTICE

Basically, the different mode flags may be combined to obtain a flexible behav-
ior when referencing positioners. However, bits 4 and 5 cannot be combined.

If both bits are set then the Stop On Reference Found (bit 5) has priority over
Continue On Reference Found (bit 4). See the detailed description of the mode
flags below.

When the SA_CTI_Reference command has completed successfully, the system knows the
physical position of the positioner (see SA_CTL_CH_STATE_BIT_IS_REFERENCED of the Chan-
nel State property).

2.8.2 Positioners With Single Reference Marks

This section describes the behavior while referencing positioners with only one reference mark in
more detail. The images on the right side illustrate the behavior of an example positioner that
is being referenced. The vertical x-axis represents the travel range of the positioner. The square
brackets indicate mechanical end stops. The dashed line indicates the position of the reference
mark.

In the examples the positioner always starts at position 0 and the physical position is unknown (red
line). Once the reference mark has been found the physical position will become known (green
line). It is assumed that the physical zero position is on the reference mark.

MCS2 Programmer’s Guide _

2 GENERAL CONCEPTS

Default Behavior (reference mode 0b00000000)

By default the positioner will start to move in forward (positive) direction

and look for a reference mark. As soon as the positioner has passed over *p *
the reference mark the internal position will be updated. This is indicated | |,
by the second x-axis having a different scale shift. .
't
The small overshoot represents the reaction time of the positioner stopping.
The amount of the overshoot depends on factors like the velocity with which

the referencing is performed, the mass that is mounted on the positioner or
a possibly configured acceleration control (in which case it takes some time
to decelerate the positioner).

The positioner will turn around and move to the exact location of the reference mark. After this
the referencing is complete.

Inverted Start Direction (reference mode 0b00000001)

Same as the default referencing, with the difference that the positioner will
start to move in backward direction and look for a reference mark.

e
X

In this example the positioner will encounter a physical end stop before find- ~ f---------------

ing the mark. The positioner will automatically reverse its search direction at o d
the end stop and continue to look for the reference mark. -l_\/ J_
Note: If the positioner encounters a second end stop then the reference

algorithm will be aborted. The positioner is stopped and an error event is

generated. Reasons for this situation may be a mechanical or electrical de-

fect (the controller does not register the reference signal for some reason) or the reference mark is
outside the physical range of the positioner (e.g. the positioner has bumped against an obstacle).

Abort On End Stop (reference mode 0b00001000)

As described above, by default the positioner will start to look for a reference
mark in the start direction and reverse the search direction if a physical end
stop is detected.

search direction on detecting a physical end stop. Instead it will stop and
generate an error which means that the referencing is aborted and consid-
ered as failed.

If the abort on end stop flag is set then the positioner will not reverse the 1

This setting may be useful when it is necessary to forbid the movement of
the positioner in a direction other than the initial search direction.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

Continue On Reference Found (reference mode 0b00010000)

Compared to the default referencing behavior this flag causes the positioner
to continue to move in the current search direction after the reference has
been found. The positioner does not stop or even turn around to return to
the exact location of the reference mark. Instead the positioner must be
stopped manually (or it is implicitly stopped by a physical end stop).

This setting may be useful e.g. when referencing several positioners syn-
chronously that are mechanically connected in a parallel kinematic. A setup
like this could cause one positioner to block and therefore fail to reference if
another positioner has stopped because it has already found its reference mark.

Stop On Reference Found (reference mode 0b00100000)

Compared to the default referencing behavior this flag causes the positioner
to stop moving as soon as the reference has been found. The positioner
does not turn around and return to the exact location of the reference mark.
Instead the positioner simply stops where it is.

This implies that due to the small overshoot described above the positioner
will not come to stop exactly on the reference mark. Since in these examples
the zero position is on the reference mark, the position will not be zero after
the referencing has completed.

2.8.3 Positioners With Multiple Reference Marks

This section describes the behavior while referencing positioners with multiple reference marks
in more detail. The general principle is that the positioner must pass over two adjacent reference
marks. The physical position may then be determined by measuring the distance between these
two marks. This method reduces the distance a positioner has to travel to determine its physical
position compared to single reference marks, especially when operating with positioners with very
long travel ranges.

As in the previous section the images on the right side illustrate the behavior of an example po-
sitioner that is being referenced. The vertical x-axis represents the travel range of the positioner.
The square brackets indicate mechanical end stops. The dashed line indicates the positions of the
reference marks.

In the examples the positioner always starts at position 0 and the physical position is unknown (red
line). Once the reference mark has been found the physical position will become known (green
line).

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

Default Behavior (without auto-zero, reference mode 0b00000000)

By default the positioner will start to move in forward (positive) direction
and look for a reference mark. When the positioner has found the first ref-
erence mark it will continue to move in forward direction and look for a sec-
ond mark. As soon as the positioner has passed over the second reference
mark the internal position will be updated according to the physical scale of
the positioner. At this point the logical scale offset will also be considered,
which restores a previously set scale (e.g. referenced with auto-zero in the
previous session). Note that this also applies if the controller is power cycled
between sessions since the logical scale offset is held in non-volatile memory. The distance-coded
reference marks make it possible to use any two reference marks of the positioner to restore the
same absolute scale. This is indicated by the second x-axis having a different scale shift.

As in the previous examples the small overshoot in the image represents the reaction time of the
positioner stopping. The amount of the overshoot depends on factors like the velocity with which
the referencing is performed, the mass that is mounted on the positioner or a possibly configured
acceleration control (in which case it takes some time to decelerate the positioner).

The positioner will turn around and move to the exact location of the second reference mark. After
this the referencing is complete.

Auto-Zero Behavior (with auto-zero, reference mode 0b00000100)

Just like the default behavior, the positioner will move in forward (positive)
direction and look for two reference marks. The main difference to the de-
fault behavior is, that as soon as the positioner has passed over the second
reference mark the internal position will be set to 0 and the logical scale off-
set will be updated accordingly. This is indicated by the second x-axis having
a different scale shift with the positioner stopping at 0. This mode may be
used for the initial setup of a system to define the absolute scale (respec-
tively to define the zero position of the scale). Once defined, the default
referencing mode may be used in later sessions to restore the same scale.

Inverted Start Direction (with auto-zero, reference mode 0b00000101)

Same as the default referencing, with the difference that the positioner will
start to move in backward direction and look for two reference marks.

In this example the positioner passes over the first reference mark, but en-
counters a physical end stop before finding the second mark. The positioner
will automatically reverse its search direction at the end stop and restart
looking for a first reference mark.

As in the previous section please note that if the positioner should encounter
a second end stop then the reference algorithm will be aborted. The posi-
tioner is stopped and an error event is generated. Reasons for this situation may be a mechanical
or electrical defect (the controller does not register the reference signal for some reason) or the

MCS2 Programmer's Guide O

2 GENERAL CONCEPTS

available travel range does not cover two reference marks (e.g. the positioner has bumped against
an obstacle).

Reverse Direction (with auto-zero, reference mode 0b00000110)

In this mode the positioner will start to move in forward (positive) direction
and look for a reference mark. When the positioner has found the first
reference mark it will reverse the movement direction and look for a second
mark. As soon as the positioner has passed over the second reference mark
the internal position will be updated (in this case set to 0 due to the auto-
zero flag). This is indicated by the second x-axis having a different scale
shift.

As in the previous examples the small overshoot represents the reaction

time of the positioner stopping. The amount of the overshoot depends on factors like the velocity
with which the referencing is performed, the mass that is mounted on the positioner or a possibly
configured acceleration control (in which case it takes some time to decelerate the positioner).

The positioner will turn around and move to the exact location of the second reference mark. After
this the referencing is complete.

This mode may further reduce the distance traveled by the positioner to determine its physical
position.

2.8.4 Positioners With Endstop Reference

This section describes the behavior while referencing positioners with an endstop reference type
in more detail. The general principle is to move the positioner towards one end of the travel range
until a mechanical endstop is detected. The sensor signals are then used to align the position to
the reference position with high repeat accuracy.

For these types of positioners the physical measuring scale is defined such that the zero posi-
tion lies near the mechanical end stop that is used for referencing. Note that the scale therefore
depends on the Safe Direction as well as the Logical Scale Inversion setting.

Positioners with an endstop reference type use the additional Safe Direction property to define
the direction of the referencing movement instead of the start direction bit of the Referencing
Options property.

All Referencing Options flags except the auto-zero flag are ignored when referencing towards an
endstop.

NOTICE

Note that the end stop must be calibrated with SA_CTI,_Calibrate before it

can be properly used as a reference point.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

Default Behavior (with auto-zero, reference mode 0b0000100)

In this mode the positioner will start moving towards the configured Safe
Direction and look for a mechanical end stop. In this example the Safe Di-
rection is assumed to be set to forward (positive) direction. T 0

distance away from the end stop to find the exact reference using the posi-
tion that was determined while calibrating the endstop.

Once the positioner has found the mechanical end stop it will move a short 1

As in the previous section the images on the right side illustrate the behavior
of an example positioner that is being referenced. The vertical x-axis repre-
sents the travel range of the positioner. The square brackets indicate mechanical end stops.

In the examples the positioner starts at position 0 and the physical position is unknown (red line).
Once the positioner is referenced the physical position will become known (green line). The auto-
zero flag is assumed to be set so the position will be set to zero once the physical position has
been determined.

2.8.5 Shifting the Measuring Scale

The physical measuring scale of a positioner is fix and cannot be changed. However, the MCS2
controller uses a logical measuring scale when calculating positions. The logical measuring scale
may be shifted and/or inverted by the user so that the controller returns a desired position value
at a certain physical position.

The relation between the physical and the logical scale is defined by two parameters. The offset
value (which represents the shift) and the inversion value (which inverts the count direction) of the
logical scale relative to the physical scale. The default value of the offset and the inversion is zero
which makes the physical and the logical scale identical.

There are two methods to modify the offset value:

« Writing the Position property sets the offset implicitly by shifting the logical scale so that the
current position equals the desired value.

+ Writing the Logical Scale Offset property sets the offset explicitly and the current position
will have a value that reflects the new scale shift.

The inversion value may be set by writing the Logical Scale Inversion property.

The offset and inversion values are stored in non-volatile memory. Once it is configured you only
need to call the SA_CTL_Reference function to restore your settings on future power-ups.

Note: The behavior of the system when writing the Position property differs slightly depending on
whether the physical position is known or not. When the physical position is unknown then writing
the Position property will not update the scale offset value in the non-volatile memory. Likewise,
writing the Logical Scale Offset property will have no immediate effect on the values read from the
Position property. The following table summarizes the behavior.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

_ Physical position is known | Physical position is unknown

Set Position Set Logical Scale Set Position Set Logical Scale

Offset value is writ- yes yes no yes
ten to non-volatile
memory

Function call has im- yes yes yes no
mediate effect on po-
sition values

2.9 Device Monitoring

The MCS2 has several features to monitor the state of the device. Monitoring can be done by
polling specific properties or by listening to events the device generates.

The Device State, Module State and Channel State properties hold state flags which can be checked
to detect a failure of a movement command or a malfunction of the device. See section 2.10 "State
Flags" for the meaning of the flags.

2.9.1 Movement Monitoring

Section 2.7.7 "Movement Feedback" describes the possibilities to obtain movement feedback by
either polling the Channel State property, reading the Channel Error property to determine the
reason for a movement failure or listening to the SA_CTL_EVENT_MOVEMENT_FINISHED event.

The following error of a positioner for closed-loop movements can be monitored by reading the
Following Error property. An additional limit property may be set. In case the following error
exceeds the configured limita SA_CTI,_EVENT_FOLLOWING_ERR_LIMIT event is generated and
the movement may be stopped automatically. See section 2.14 "Following Error Detection" for the
configuration of this feature.

2.9.2 Magnetic Driver Overload Protection

The Magnetic Driver monitors the output current of each channel to detect an overload condition
of the positioner. This prevents thermal overheating and potential damage of the positioners coils,
isolation and permanent magnets.

The following limiting parameters are defined for every positioner type:

* the continuous current limit
* the maximum (intermittent) current limit
* the permitted time constant

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

The continuous current limit specifies the highest current level the driver can apply continuously
without overheating the positioner.

The maximum (intermittent) current limit specifies the highest current level the driver can
apply for a specified permitted time. (Typically in the range of a few seconds.) This higher limit
makes it possible to improve the performance of a movement by using a higher current for a short
time, e.g. to accelerate and decelerate the positioner.

The MCS2 implements the 12T protection which does not require additional temperature sensors
in the positioners. Whenever the control-loop is enabled the channel continuously integrates the
square of the current. Because resistive heat generation is proportional to the square of the cur-
rent this method gives a reasonable representation of the generated thermal load of the posi-
tioner. The difference between the squared present current and the squared continuous current
is accumulated. If this sum exceeds a specified limit the overload protection triggers and the
control-loop is disabled to protect the positioner. This is indicated by the
SA_CTL_CH_STATE_BIT_POSITIONER_OVERLOAD Channel State bit. A running movement is
aborted and a SA_CTL_EVENT_MOVEMENT_FINISHED event with its parameter set to
SA_CTL_ERROR_POSITIONER_OVERLOAD is generated.

The overload flag is cleared automatically after the current sum has dropped again under a defined
level. After this a new movement may be commanded or the SA_CTL_Stop command may be
used to enter the holding state.

The present load level may be read in percent with the Motor Load property. This may be useful
to estimate the motor load while performing movements before the overload protection triggers
and disables the control-loop. In case the motor load reaches a level close to 100 % the number
of movements per time, the movement acceleration and/or the mechanical load attached to the
positioner should be reduced.

WARNING

Magnetic driven positioners are not self-locking. Disabling the control-loop re-

moves any holding force from the positioner. Make sure not to damage any
equipment when the positioner changes its position unintentionally!

2.9.3 Hardware Monitoring

The MCS2 offers limited hardware monitoring of critical components. This includes the tempera-
ture of the internal amplifiers and the voltage of the power supply.

Temperature

If an over-temperature condition is detected on a channel then the corresponding amplifier is
shut down automatically to protect it from being damaged. This is indicated by the Channel State
bit SA_CTL_CH_STATE_BIT_OVER_TEMPERATURE.

Additionally, the SA_CTIL_MOD_STATE_BIT_OVER_TEMPERATURE flag of the Module State is set
if any channel of the module shows the over-temperature flag (logical OR of the channel flags) and

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

a SA_CTI_EVENT_OVER_TEMPERATURE event is generated to inform the user. Positioner move-
ments in this state are not permitted. Once the amplifier has cooled down to a safe temperature
the over-temperature flags are cleared and the channel may then be used again normally.

The diagnostic properties Channel Temperature and Bus Module Temperature may be used to
read the current temperatures. (See there for more information.)

Cooling Fan

The SA_CTL_MOD_STATE_BIT_FAN_FAILURE flag of the Module State property indicates a fan
failure for MCS2 devices which are equipped with a cooling fan." This may be a blockage or dam-
age of thefan. ASA_CTL_EVENT_FAN_FAILURE_STATE_CHANGED event is generated to inform
the user. Note that the fan is temperature-controlled and thus disabled most of the time as long
as the device temperature is within the normal range.

Power Supply

The SA_CTI_MOD_STATE_BIT_POWER_SUPPLY_OVERLOAD flag of the Module State property
indicates a power supply overload. A SA_CTL_EVENT_POWER_SUPPLY_OVERLOAD eventis gen-
erated to inform the user. Note that an overload may be caused by a defective positioner or wiring.
Remove the positioners and check for any damages. Once the failure is eliminated, the overload
flag is cleared automatically.

The SA_CTL_MOD_STATE_BIT_POWER_SUPPLY_FAILURE flag of the Module State property in-
dicates a power supply failure. A SA_CTI_EVENT_POWER_SUPPLY_FATILURE event is gener-
ated to inform the user. Note that this failure points to a hardware damage. The controller should
be powered down and checked by SmarAct in this case.

Positioner Faults

The Magnetic Driver may detect a defective positioner. A positioner fault is indicated by the Chan-
nel State bit SA_CTL_CH_STATE_BIT_POSITIONER_FAULT. In case of a fault the amplifier is
disabled immediately. The Positioner Fault Reason property may then be read to determine the
fault reason. The positioner must be disconnected from the controller and should be checked by
SmarAct in this case.

2.10 State Flags

2.10.1 Device State Flags

The device state may be read from the Device State property. The value is a bit field containing
independent flags. Undefined flags are reserved for future use. Therefore, the user software
should not rely on a static value of undefined flags. The following flags are defined:

'The fan failure detection is currently only available for Magnetic Driver.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

| coemmton | wask

0 SA_CTL_DEV_STATE_BIT_HM_PRESENT 0x00000001
1 SA_CTL_DEV_STATE_BIT_MOVEMENT_LOCKED 0x00000002
8 SA_CTL_DEV_STATE_BIT_INTERNAL_COMM_FATILURE 0x00000100
12 SA_CTL_DEV_STATE_BIT_IS_STREAMING 0x00001000

HM Present (bit 0)

This flag indicates that a hand control module is attached to the device.

Movement Locked (bit 1)

This flag indicates that the device is locked due to an emergency stop condition. (see section 2.20.2
"Emergency Stop Mode")

Internal Communication Failure (bit 8)

This flag indicates that an internal communication failure has occurred. This suggests a hardware
defect. Please contact SmarAct.

Is Streaming (bit 12)

This flag indicates that the device is currently performing a trajectory stream (see section 2.18
"Trajectory Streaming").

2.10.2 Module State Flags

The module state may be read from the Module State property. The value is a bit field containing
independent flags. Undefined flags are reserved for future use. Therefore, the user software
should not rely on a static value of undefined flags. The following flags are defined:

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

| coemmton | wask

0 SA_CTL_MOD_STATE_BIT_SM_PRESENT 0x00000001
1 SA_CTL_MOD_STATE_BIT_BOOSTER_PRESENT 0x00000002
2 SA_CTL_MOD_STATE_BIT_ADJUSTMENT_ACTIVE 0x00000004
3 SA_CTL_MOD_STATE_BIT_TOM_PRESENT 0x00000008
8 SA_CTL_MOD_STATE_BIT_INTERNAL_COMM_FATILURE 0x00000100
11 SA_CTL_MOD_STATE_BIT_FAN_FAILURE* 0x00000800
12 SA_CTL_MOD_STATE_BIT_POWER_SUPPLY_FAILURE 0x00001000
12 SA_CTL_MOD_STATE_BIT_HIGH_VOLTAGE_FAILURE1 0x00001000
13 SA_CTL_MOD_STATE_BIT_POWER_SUPPLY_OVERLOAD 0x00002000
13 SA_CTL_MOD_STATE_BIT_HIGH_VOLTAGE_OVERLOAD1 0x00002000
14 SA_CTL_MOD_STATE_BIT_OVER_TEMPERATURE 0x00004000

SM Present (bit 0)

This flag indicates whether a Sensor Module is currently attached to the Driver Module.

Booster Present (bit 1)

This flag indicates whether the Driver Module is equipped with a booster for high current signal
output.

Adjustment Active (bit 2)

This flag indicates whether the module is performing an adjustment for the SmarAct PicoScale
Laserinterferometer.

I/0 Module Present (bit 3)

This flag indicates whether the Driver Module is equipped with an I/0 Module.

Internal Communication Failure (bit 8)

This flag indicates that an internal communication error has occurred. This suggests a hardware
defect. Please contact SmarAct.

*This module state bit is only valid for Magnetic Driver.
'This definition is deprecated and may be removed in future releases.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

Fan Failure (bit 11)

This flag indicates that the module detected a failure of the cooling fan. Check for a blockage of
the fan and make sure that it can spin freely.

High Voltage / Power Supply Failure (bit 12)

This flag indicates that the module detected a power supply failure. This suggests a hardware
defect. Please contact SmarAct.

High Voltage / Power Supply Overload (bit 13)

This flag indicates that the module detected a power supply overload condition. For Stick-Slip
Piezo Driver this can have two main reasons:

+ Ashort circuit between one of the HV+ signals with HV- (or shield). Removing the short circuit
will automatically clear the flag again.

+ Driving a positioner continuously at high frequencies for too long may overload the power
amplifier. Stopping positioners and letting the amplifier cool down will reset the flag.

Over Temperature (bit 14)

This flag indicates that the module detected an over temperature condition. This will shut down
the power amplifier to prevent thermal damage. As soon as the temperature drops to a non-
critical level the amplifier is enabled again and the flag is cleared.

Note that this flag is rarely raised under normal conditions and may indicate improper cooling,
such as a fan failure.

2.10.3 Channel State Flags

The channel state may be read from the Channel State property. The value is a bit field containing
independent flags. Undefined flags are reserved for future use. Therefore, the user software
should not rely on a static value of undefined flags. The following flags are defined:

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

| coemmton | wask

0 SA_CTL_CH_STATE_BIT_ACTIVELY_ MOVING 0x00000001
1 SA_CTL_CH_STATE_BIT_CLOSED_LOOP_ACTIVE 0x00000002
2 SA_CTL_CH_STATE_BIT_CALIBRATING 0x00000004
3 SA_CTL_CH_STATE_BIT_REFERENCING 0x00000008
4 SA_CTL_CH_STATE_BIT_MOVE_DELAYED 0x00000010
5 SA_CTL_CH_STATE_BIT_SENSOR_PRESENT 0x00000020
6 SA_CTL_CH_STATE_BIT_IS_CALIBRATED 0x00000040
7 SA_CTL_CH_STATE_BIT_IS_REFERENCED 0x00000080
8 SA_CTL_CH_STATE_BIT_END_STOP_REACHED 0x00000100
9 SA_CTL_CH_STATE_BIT_RANGE_LIMIT_REACHED 0x00000200
10 SA_CTL_CH_STATE_BIT_FOLLOWING_LIMIT_REACHED 0x00000400
11 SA_CTL_CH_STATE_BIT_MOVEMENT_FAILED 0x00000800
12 SA_CTL_CH_STATE_BIT_IS_STREAMING 0x00001000
13 SA_CTL_CH_STATE_BIT_POSITIONER_OVERLOAD* 0x00002000
14 SA_CTL_CH_STATE_BIT_OVER_TEMPERATURE 0x00004000
15 SA_CTL_CH_STATE_BIT_REFERENCE_MARK 0x00008000
16 SA_CTL_CH_STATE_BIT_IS_PHASED* 0x00010000
17 SA_CTL_CH_STATE_BIT_POSITIONER_FAULT* 0x00020000
18 SA_CTL_CH_STATE_BIT_AMPLIFIER_ENABLED 0x00040000
18 SA_CTL_CH_STATE_BIT_AMPLIFIER_ENABLED 0x00040000

Actively Moving (bit 0)

The channel is actively moving the positioner (open-loop or closed-loop).

Closed Loop Active (bit 1)

The channel is in closed-loop operation using sensor feedback (moving or holding the position).

Calibrating (bit 2)

The channel is busy performing a calibration sequence. (See section 2.7.1 "Calibrating".)

*This channel state bit is only valid for Magnetic Driver.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

Referencing (bit 3)

The channel is busy performing a find reference sequence. (See section 2.7.2 "Referencing".)

Move Delayed (bit 4)

The channel is waiting for the sensor to power-up before executing the movement command. This
flag may be active if the sensor is operated in power save mode.

Sensor Present (bit 5)

A positioner with integrated sensor is attached to the channel. This indicates whether closed-loop
movements may be performed.

Is Calibrated (bit 6)

The channel has valid signal correction calibration data for the configured positioner type. This
flag is cleared when the positioner type is changed. It is set after a signal correction calibration
sequence finished successfully. Note that physically different positioners of the same type require
distinct calibration data. For positioners without SmarAct Positioner ID System the channel is not
able to detect the change of the positioner. Consequently this flag will remain. Nonetheless the
calibration sequence must be repeated once for the channel. (See section 2.7.1 "Calibrating".)

Is Referenced (bit 7)

The channel "knows" its physical (absolute) position. After a power-up the physical position is
unknown. After the reference mark has been found by calling SA_CTL_Reference the physical
position becomes known. (See section 2.7.2 "Referencing".) Detaching the positioner clears the
flag.

End Stop Reached (bit 8)

The target position of a closed-loop movement command could not be reached because a me-
chanical end stop was detected. The positioner was stopped. The flag is cleared when a new
movement command respectively stop command is issued. (See section 2.13 "Endstop Detec-
tion".)

Range Limit Reached (bit 9)

The positioner left the software configured range limit. The positioner was stopped. The flag is
cleared when a new movement command respectively stop command is issued. (See section 2.15
"Software Range Limit".)

MCS2 Programmers Guide O

2 GENERAL CONCEPTS

Following Limit Reached (bit 10)

The positioners following error exceeded the configured limit. The flag is cleared when a new
movement command respectively stop command is issued. (See section 2.14 "Following Error
Detection".)

Movement Failed (bit 11)

The last movement command failed. The Channel Error property may be read to determine the
reason for the error.

Is Streaming (bit 12)

The channelis currently participating in a trajectory stream. As long as this flag is set the channel is
unavailable for movement or configuration commands. (See section 2.18 "Trajectory Streaming".)

Positioner Overload (bit 13)

The channel detected an overload condition of the positioner. This will disable the control-loop
to prevent the positioner from overheating. As soon as the internal detection level drops to a
non-critical value the flag is cleared. (See section 2.9.1 "Movement Monitoring".)

Over Temperature (bit 14)

The channel detected an over temperature condition. This will shut down the power amplifier to
prevent thermal damage. As soon as the temperature drops to a non-critical level the amplifier is
enabled again and the flag is cleared.

Note that this flag is rarely raised under normal conditions and may indicate improper cooling,
such as a fan failure.

Reference Mark (bit 15)

This flag reflects the state of the reference mark signal of the sensor.

Is Phased (bit 16)"

The channel has valid data for the commutation of a magnetic driven positioner. A channel must
be phased in order to be able to move a positioner. (See section 2.22 "Phasing of Magnetic Driven
Positioners".)

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

Positioner Fault (bit 17)*

The channel detected a positioner fault. (See section 2.9.3 "Hardware Monitoring".)

Amplifier Enabled (bit 18)

This flag reflects the state of the amplifier. (See Amplifier Enabled property.)

2.11 Sensor Power Modes

In order for a positioner to track its position, its sensor needs to be supplied with power. How-
ever, since this generates heat (causing drift effects), it might be desirable to disable the sensors
in some situations (especially in temperature critical environments). For this, there are three dif-
ferent modes of operation for the sensor, which may be configured individually for each channel
with the Sensor Power Mode property. The following modes are available:

+ Disabled In this mode the power supply of the sensor is turned off. This avoids the gener-
ation of heat by the sensor. Movement commands that require sensor feed back (such as
closed-loop movements, referencing or calibrating) will not be executed. Instead, the gen-
erated SA_CTI_FEVENT_MOVEMENT_FINISHED event holds an error code informing about
the sensor state.

Besides avoiding heat generation this mode may also be useful if the light that is emitted
by the sensor interferes with other components of your setup (e.g. detectors inside an SEM
chamber).

* Enabled In this mode the sensor is supplied with power continuously. All movement com-
mands are executed normally.

+ PowerSave’If set to this mode the power supply of the sensor will be handled by the channel
automatically. If the positioner is idle the sensor will be offline most of the time, avoiding
unnecessary heat generation. A movement command (open-loop or closed-loop) will cause
the channel to activate the sensor before the movement is started. Since it takes a few
milliseconds to power-up the sensor, the movement will be delayed. The Channel State bit
SA_CTL_CH_STATE_BIT_MOVE_DELAYED is set during this time.

Figure 2.6 illustrates the different sensor modes and shows when the sensor is supplied with
power.

In this example the sensor mode is initially set to enabled. The sensor is continuously supplied
with power. At time t; the sensor mode is switched to power save. In this mode the channel starts
to pulse the power supply of the sensor to keep the heat generation low. At time t, a movement
command is issued, which requires the sensor to be online in order to keep track of the current
position. Note that the sensor mode stays unchanged during this time. After the movement has
finished (t3) an additional delay is started. While this delay the sensor stays online. (See the Sensor
Power Save Delay property.) As soon as the delay time has elapsed (t4) the channel will start to

*This channel state bit is only valid for Magnetic Driver.
*The power save mode is only available for Stick-Slip Piezo Driver.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

Sensor

Mode enabled power save disabled
Sensor

Power " " " ||| " " "

Supply ~ off

~+ Vv

t, t ts t, ts
Figure 2.6: Sensor Modes

pulse the power supply again. At time ts the sensor mode is switched to disabled, in which the
power supply is turned off continuously.

NOTICE

When in PowerSave or Disabled mode the positioner should not be moved by
external means (e.g. by hand)! Since in these modes the power supply of the

sensor is off most of the time or even continuously, the controller is not able to
detect such movements. As a consequence the position data will become invalid.
Furthermore, no error can be generated.

Stick-Slip Piezo Driver

Note that the sensor must be in Enabled or PowerSave mode for the sensor-present detection to
be active. Accordingly, the Channel State bit SA_CTIL_CH_STATE_BIT_SENSOR_PRESENT is not
updated as long as the sensor is Disabled.

Magnetic Driver

The sensor-present detection is active in Disabled mode too. When setting the Sensor Power Mode
to Disabled the control-loop and the amplifier is disabled and the phasing becomes invalid. See
section 2.22 "Phasing of Magnetic Driven Positioners" for more information.

WARNING

Magnetic driven positioners are not self-locking. Disabling the control-loop re-

moves any holding force from the positioner. Make sure not to damage any
equipment when the positioner changes its position unintentionally!

2.12 PicoScale Sensor Module

The MCS2 supports the SmarAct PicoScale laser interferometer as a high precision sensor module.
This section explains the differences when using a PicoScale instead of the MCS2 sensor module.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

For a detailed description and setup of the PicoScale refer to the PicoScale User Manual.

For connecting the PicoScale to the MCS2 a special adapter cable (MCS2-A-PS-CABLE-1.5M-1.5M)
is required. The adapter cable connects to the MCS2 and splits the high voltage output to three
connections for positioners and forwards the data connection to the PicoScale.

When the PicoScale is connected to the MCS2, it is reported as a connected sensor module in the
Module State Flags. Since the MCS2 only knows the sensor present flag in the Channel State Flags,
but the PicoScale uses a number of different flags to indicate the system state, these flags are
merged in the MCS2 context. For the sensor present flag to become active the following conditions
must be met:

+ System stable

+ Channel enabled

* Channel data valid

* Beam not interrupted

For most of these flags to become active the channel needs to be adjusted. The adjustment can
be performed using the PicoScale GUI or the MCS2 hand control module.

By default the MCS2 will use the PicoScale position data source as input for the control-loop.
Alternatively, the calculation system can be selected as the input using the Sensor Input Select
property. Note that the mapping between PicoScale calculation systems and MCS2 channels is
static. The output of calculation system 0 of the PicoScale is used as input for channel 0 of the
MCS2. Accordingly, calcSys 1 is used for channel 1 and calcSys 2 is used for channel 2.

When using the calculation system as input the conditions for the sensor present flag are as fol-
lows:

+ System stable
+ Calculation system data not interrupted

2.13 Endstop Detection

SmarAct positioners do not require any physical limit switches to detect the end of the travel range
while moving. The MCS2 features a software-driven endstop detection. If a mechanical blockage
is detected while performing a closed-loop movement the channel is stopped.

A SA_CTL_EVENT_MOVEMENT_FINISHED event with its parameter set to
SA_CTL_ERROR_END_STOP_REACHED is generated and the Channel State bits:

* SA_CTL_CH_STATE_BIT END_STOP_REACHED and
* SA_CTL_CH_STATE_BIT MOVEMENT_ FAILED

will be set to one. The flags remain set until a new movement (or a SA_CTL_Stop) iscommanded.
Note that when using auxiliary inputs as control-loop feedback it may be necessary to disable
the endstop detection by setting the Positioner ESD Distance Threshold property to zero. See
section 2.19.5 "Using Analog Inputs as Control-Loop Feedback" for more information.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

Stick-Slip Piezo Driver

The endstop detection is active while performing a closed-loop movement and while holding
the position. If an endstop is detected the channel enters the stopped state and the control-
loop is disabled. If a positioner is moved away from the target position by external means and
the channel is not able to hold the target position for a longer time an endstop is triggered. A
SA_CTL_EVENT_HOLDING_ABORTED event is generated to notify about this and the channel is
stopped.

Magnetic Driver

The endstop detection is active while performing a movement but not while holding the position.
If an endstop is detected the channel enters the holding state to stop the movement. Furthermore
the maximum output current is reduced to the permitted continuous current value. This means
that the holding force of the positioner is reduced from then on but with the benefit that an ongo-
ing blockage will not trigger the overload detection. This would otherwise disable the control-loop
and subsequently remove the holding force from the positioner. A new movement command
reverts the maximum current to its intermittent value.

If it is desired to abort the control-loop on a position deviation in the holding state the following
error detection may be used. See section 2.14 "Following Error Detection" for more information.

2.14 Following Error Detection

The following error detection feature may be used to inform the application if a commanded tra-
jectory cannot be followed by a positioner precisely enough. The following error is, at a given time,
the difference between the target position and the actual position while performing closed-loop
movements. The positioner will always have a non-zero following error but the control-loop is
tuned to reduce this error to its minimum. To enable the detection:

+ The Following Error Limit property must be set to a non-zero value.
+ The velocity control must be enabled (see Move Velocity).

The limit value is given in pm for linear positioners and in n° for rotary positioners. By default a
following error is reported only without taking any further actions. As soon as the configured limit
is exceeded during a closed-loop movement a SA_CTL_EVENT_FOLLOWING_ERR_LIMIT event
is generated and the SA_CTL_CH_STATE_BIT_FOLLOWING_LIMIT_REACHED Channel State bit
will be set to one. The flag remains set until a new movement (or a SA_CTIL_Stop)is commanded.

Optionally the movement may be stopped automatically if the limit is exceeded.

The SA_CTL_POS_CTRL_OPT_BIT_STOP_ON_FOLLOWING_ERR bit of the Positioner Control Op-
tions property must be set to one to stop the movement. In this case two events are generated.
Firstly, the above mentioned SA_CTI_EVENT_FOLLOWING_ERR_LIMIT, secondly a
SA_CTL_EVENT_MOVEMENT_FINISHED event. The latter will have its parameter set to
SA_CTL_ERROR_FOLLOWING_ERR_LIMIT. Additionally the Channel State bits:

* SA_CTL_CH_STATE_BIT_FOLLOWING_LIMIT_ REACHED and
* SA_CTL_CH_STATE_BIT_MOVEMENT_FAILED

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

will be set to one. The flags remain set until a new movement (or a SA_CTI_Stop)is commanded.

Note that the detection is not active during referencing movements.

Stick-Slip Piezo Driver

The following error detection is active while performing a movement and while holding the posi-
tion. If the detection triggers (and the 'stop on following error’ positioner control option is enabled)
the channel enters the stopped state and the control-loop is disabled.

Magnetic Driver

The following error detection is active while performing a movement and while holding the posi-
tion. Assuming that the 'stop on following error’ positioner control option is enabled, the behavior
is sightly different depending on the current state: While moving the channel enters the hold-
ing state to stop the movement if the detection triggers. If it triggers while holding the position
(e.g. if the positioner is moved by external means) the channel tries to hold the position but the
maximum output current is reduced to the permitted continuous current value. This means that
the holding force of the positioner is reduced from then on but with the benefit that an ongoing
blockage will not trigger the overload detection. This would otherwise disable the control-loop and
subsequently remove the holding force from the positioner. A new movement command reverts
the maximum current to its intermittent value.

The additional SA_CTL_POS_CTRL_OPT_BIT_CL_DIS_ON_FOLLOWING_ERR bit of the Positioner
Control Options property may be used to disable the control-loop instead of just stopping the
movement. This option has a higher priority than the stop option if both options are enabled.
Note that the amplifier is not disabled in this case. This means that any new movement or stop
command will automatically re-enable the control-loop.

WARNING

Magnetic driven positioners are not self-locking. Disabling the control-loop re-

moves any holding force from the positioner. Make sure not to damage any
equipment when the positioner changes its position unintentionally!

2.15 Software Range Limit

While linear positioners have a limited physical travel range it might be useful to further limit this
range if the positioner must not be allowed to move beyond a certain point. Rotary positioners
usually have no physical end stops, but e.g. wiring may require to limit the rotation here as well.
For these situations the MCS2 controller offers to limit the travel range of a positioner by software.

By default no range limit is set. To enable the range checks, the Range Limit Max property must be
set to a higher value than the Range Limit Min property. Once the limits are set the positioner will

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

not move beyond the boundaries of the range limit. This affects all movements except scan move-
ments. If a movement command is issued that move the positioner beyond the defined limit then
the positioner is stopped. A SA_CTI_EVENT_MOVEMENT_FINISHED event with its parameter set
to SA_CTL_ERROR_RANGE_LIMIT_REACHED is generated and the Channel State bits:

* SA_CTI_CH_STATE_BIT_RANGE_LIMIT_REACHED and
* SA_CTL_CH_STATE_BIT_MOVEMENT_FAILED

will be set to one. The flags remain set until a new movement (ora SA_CTL_Stop) is commanded.
Further movements are only allowed if they move the positioner in the direction pointing back
inside the range limit. This also applies if the positioner has been moved outside the defined
range limit by external means.

Note that when commanding the positioner towards a limit with enabled acceleration control (see
Move Acceleration property) the positioner is decelerated to zero velocity in a way that it comes to
a halt on the specified limit position.

Both the minimum and maximum position of the range limit behave similarly to a physical end
stop. For example, the SA_CTL_Reference command will reverse its movement direction while
looking for the reference mark if a range limit boundary is reached. If the reference mark is located
outside the range limit then it will not be found.

It is possible to define the default values for the range limits at device startup, e.g. for applications
where no dedicated control software is used. This may be useful e.g. for stand-alone operation
with the hand control module. Set the Default Range Limit Min and Default Range Limit Max
properties to specify the startup defaults.

Please note the following restrictions:

* The Range Limit Min and Range Limit Max properties are not saved to non-volatile mem-
ory and must be configured in each session. (The default values at device startup may be
configured with the Default Range Limit Min and Default Range Limit Max properties.)

* The range limits are not checked while performing the SA_CTL_Calibrate function for
the signal correction calibration.

* The range limit has a limited accuracy. The positioner may pass over the boundary by a
few micro meters resp. milli degrees if no acceleration control is used for the movement.
Therefore, the range should be defined with sufficient tolerance in this case.

NOTICE
Setting the Position (as well as the Logical Scale Offset and Logical Scale Inver-
sion properties) does not automatically adjust the software range limit accord-

ingly. This means that shifting the measurement scale of the positioner with
these commands will also shift the physical position of the software range limit.
Therefore, care should be taken when working with these commands.

MCS2 Programmer’s Guide O

2 GENERAL CONCEPTS

2.16 Stop Broadcasting

This feature can be used to broadcast a stop command to all channels on the MCS2 controller
when a channel

+ detects a mechanical end stop (see section 2.13 "Endstop Detection"),
* reaches a software range limit (see section 2.15 "Software Range Limit") or
+ exceeds a following error limit (see section 2.14 "Following Error Detection").

It is typically useful when multiple channels are moving simultaneously and one of the above
conditions on one channel should cause a halt on all other channels. The channel that caused
the broadcast stop generates a SA_CTL_EVENT_MOVEMENT_FINISHED event with its parameter
holding the reason for the stop. (SA_CTL_ERROR_END_STOP_REACHED,
SA_CTL_ERROR_RANGE_LIMIT_REACHED or SA_CTL_ERROR_FOLLOWING_ERR_LIMIT)

All other (currently moving) channels will be stopped and generate a
SA_CTL_EVENT_MOVEMENT_FINISHED event with its parameter set to
SA_CTL_ERROR_ABORTED.

NOTICE

A channel's behavior for a broadcast stop is the same as when executing a sin-

gle SA_CTL_Stop command. Thus channels moving with acceleration control
active may not come to halt immediately.

2.16.1 Stop Broadcast Configuration

The Broadcast Stop Options property defines the behavior of the broadcast stop feature. It holds
a bit mask with the following mode bits:

BN N Short Description

0 End Stop Reached Broadcast stop command if a mechanical end stop was
detected.
1 Range Limit Reached Broadcast stop command if a range limit was reached.
2 Following Limit Reached* Broadcast stop command if a following error limit was ex-
ceeded.
3..31 Reserved These bits are reserved for future use. Should be set to
zero.

*Note that the SA_CTL_POS_CTRL_OPT_BIT_STOP_ON_FOLLOWING_ERR bit of the Positioner
Control Options property must be set to one to stop the movement and subsequently generate a
broadcast stop on a following error limit.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

Example

The example code below configures the device to issue a broadcast stop if channel 0 reaches an
end stop or a Software Range Limit (=2mm).

SA_CTL_Result_t result;
result = SA_CTL_SetProperty_ 132 (
dHandle,
Or
SA_CTL_PKEY_RANGE_LIMIT_MIN, -2e9);
if (result) { /+ handle error, abort =/ }
result = SA_CTL_SetProperty_ 132 (

dHandle,

OI

SA_CTL_PKEY_RANGE_LIMIT_ MAX, 2e9);
if (result) { /+* handle error, abort =/ }
result = SA_CTL_SetProperty_132(

dHandle,

OI

SA_CTL_PKEY_ BROADCAST_STOP_OPTIONS,
(SA_CTL_STOP_OPT_BIT_END_STOP_REACHED |
SA_CTL_STOP_OPT_BIT_RANGE_LIMIT_REACHED)
)i
if (result) { /% handle error, abort =*/ }

2.17 Command Groups

When issuing movement or configuration commands they usually target a single channel of the
device. However, when trying to move several channels synchronously communication delays
induce a time offset of the resulting movements.

Command groups offer the possibility to define an atomic group of commands that is executed
synchronously. In addition, a command group may not only be triggered via software, but alter-
natively via an external trigger.

To define a command group simply surround the commands that should be grouped with calls to
the SA_CTI_OpenCommandGroup and SA_CTI_CloseCommandGroup functions and pass the
transmit handle received from the SA_CTL_OpenCommandGroup function to all commands to be
grouped.

For example, consider the code sequence below that configures two channels with the closed-loop
absolute move mode and then moves both channels to some target position. (For simplicity the
function return values are not handled in this example.)

SA_CTL_RequestWriteProperty_ 132 (
dHandle,
Ol
SA_CTL_PKEY_ MOVE_MODE,

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

SA_CTIL_MOVE_MODE_CIL_ABSOLUTE,
&rIDO,
0
)
SA_CTL_RequestWriteProperty_ 132 (
dHandle,
ll
SA_CTL_PKEY_MOVE_MODE,
SA_CTL_MOVE_MODE_CIL_ABSOLUTE,
&rID1,
0
)
SA_CTL_Move (dHandle, 0,1000000,0) ;
SA_CTL_Move (dHandle, 1,2000000,0) ;
SA_CTL_WaitForWrite (dHandle, rIDO) ;
SA_CTL_WaitForWrite (dHandle, rID1)

4

The next code snippet shows the same example, but the commands are put into a command
group (changes are colored).

SA_CTL_TransmitHandle_t tHandle;
SA_CTL_OpenCommandGroup (dHandle, &tHandle
, SA_CTL_CMD_GROUP_TRIGGER_MODE_DIRECT) ;
SA_CTL_RequestWriteProperty_ 132 (

dHandle,

Ol

SA_CTL_PKEY_ MOVE_MODE,

SA_CTL_MOVE_MODE_CIL_ABSOLUTE,

&r1IDO,

tHandle
)i
SA_CTL_RequestWriteProperty_132(

dHandle,

ll

SA_CTL_PKEY_ MOVE_MODE,

SA_CTL_MOVE_MODE_CIL_ABSOLUTE,

&r1ID1,

tHandle
)
SA_CTL_Move (dHandle, 0,1000000, tHandle) ;
SA_CTL_Move (dHandle,1,2000000, tHandle) ;
SA_CTL_CloseCommandGroup (dHandle, tHandle) ;
SA_CTL_WaitForWrite (dHandle, rIDO) ;
SA_CTL_WaitForWrite (dHandle, rID1) ;

As a result the commands are treated as one command and the movements of both channels
start synchronously (in this case as soon as the command group is closed, since the direct trigger
mode is used). A SA_CTL_EVENT_CMD_GROUP_TRIGGERED event is generated once the group
was triggered.

One important thing to notice is that the SA_CTIL_WaitForWrite function calls must be issued
after the command group was closed. Otherwise the function calls will block. The same applies to

MCS2 Programmer’s Guide _

2 GENERAL CONCEPTS

commands that read properties from the device: put the SA_CTL_RequestReadProperty calls
into the command group, butissue e.g. SA_CTL_ReadProperty_1i32 calls after the group close.

Note that synchronous property accesses cannot be putinto a command group. Only the following
commands may be added to command groups by passing the transmit handle to the function call:

* SA_CTL_RequestReadProperty

* SA_CTL_RequestWriteProperty_ 132
* SA_CTL_RequestWriteProperty_i64
* SA_CTL_RequestWriteProperty_s

* SA_CTL_Calibrate

* SA CTL_Reference

* SA_CTL_Move

* SA_CTL_Stop

In addition note that not all properties may be added to command groups. (E.g. device proper-
ties can never be used.) If a property is group-able or not is indicated in the detailed property
description (See chapter 4 "Property Reference").

A maximum of 32 command groups may be opened simultaneously. If the limit is reached the
SA_CTL_OpenCommandGroup function will returna SA_CTL_ERROR_BUFFER_LIMIT_REACHED
error.

The maximum number of commands per group depends on the number of opened groups and the
distribution of commands to the modules. Each module has one queue with 32 command slots for
all commands to this module and its channels. If this limit is reached on one of the modules the
execution of the group is aborted and a SA_CTL_ERROR_BUFFER_OVERFLOW error is reported
with the SA_CTL_EVENT_CMD_GROUP_TRIGGERED event which is generated after closing resp.
triggering the command group.

2.17.1 Command Groups vs. Output Buffer

Output buffer (as described in the High-Throughput Asynchronous Access for properties) are quite
similar to command groups. However, there are still some differences which are outlined in the
following.

+ Triggering While output buffer are executed as soon as they are flushed, command groups
may alternatively be triggered via an external trigger.

+ Size Limit Command groups are somewhat limited in size regarding the number of com-
mands that may be put into them. Output buffer are (theoretically) unlimited in size.

+ Atomicity Output buffer simply try to optimize communication, but still treat the commands
independently from each other. Output buffer are flushed on library level. In contrast, com-
mand groups optimize both communication and synchronized execution. They are flushed
on controller level.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

2.18 Trajectory Streaming

Trajectory streaming allows a multi DoF manipulator to follow specific trajectories using the MCS2
controller. All participating positioners are moved synchronously along the defined trajectory.’
This section describes the concepts of trajectory streaming and how an application program must
use the API to perform a trajectory movement.

A trajectory movement requires special (user) software to pre-calculate support points of the tra-
jectory (although the support points might also be calculated "on the fly"). These support points
are then streamed to the controller which takes care of executing a synchronized movement of all
participating channels.

2.18.1 General Streaming Concept

A trajectory stream is defined as a sequence of support points (frames). Each frame is a tuple
of target positions for all channels that participate in the trajectory. Each target position in turn
is a tuple of a channel index and a position value. Position values are given as a 64-bit integer
value in little-endian format, representing pico meters for linear positioners and nano degrees
for rotary positioners. All values are given as absolute (not relative) position values. Figure 2.7
shows the general format of a trajectory stream and figure 2.8 shows an example trajectory with
the according binary stream data.

The timing with which the frames are executed can be defined by the stream rate that is config-
urable by the user. This rate is constant for the duration of the stream. Furthermore, the timing
can be synchronized or even fully controlled by using an external trigger.

(L
Stream frame 0 I frame 1 | \\ |frame n-2|frame n-1|

—
-~
~— KL
~_—
-~

-~
-
—

|
|
|
[{L =
Frame | target 0 | target 1 | \\ |target m-2|target m-1|
- 1/
:
|
|

~
\\
~

~
\;

Target ix | pos |

Figure 2.7: Trajectory Stream Format

Streaming Rules

When using trajectory streaming some rules must be heeded that are described in the following:

+ Only one trajectory may be performed at a time. Suppose you have six channels available
that are divided into two XYZ manipulators (A and B). Then you could start a trajectory with
manipulator A. During this time it is not allowed to start a stream for manipulator B. If both
manipulators are to be synchronized then the stream must contain all six channels from the
beginning.

'Note that the trajectory streaming is not available for dual-piezo hybrid positioners.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

Offset Data

chl a 0x0000 [0080841e000000000001/80841e0000000000| Frame 0
(um] 0x0012 [00c0c62d000000000001[00093d0000000000| Frame 1
15 0x0024 [00404b4c000000000001808d500000000000| Frame 2
0x0036 [00c0cf6a000000000001cOcf6a0000000000| Frame 3

0x0048 [00001272a0000000000/01/4054890000000000| Frame 4

10 0x005a [00001272000000000001c0d8a70000000000| Frame 5
0x006c [00405489000000000001/405dc60000000000| Frame 6

0x007e [00c0d8a7000000000001/c0e1e40000000000| Frame 7

; Frame12 0x0090 [00405d65000000000001/0024£40000000000| Frame 8
0x00a2 [00c0ele4000000000001c0ele40000000000| Frame9
—— 0x00b4 ooooz4féoooooooooooL405dceoooooooooo Frame 10

brpmse O - 0x00c6 [00c0el1ed4000000000001c0d8a70000000000/ Frame 11
5 10 5 cpo 0x00d8 _G 405dc60000000000014054890000000000] Frame 12
[um] Crnadner;(el Position

Figure 2.8: Trajectory Stream Example

* The first frame of a stream defines which channels participate in the stream. All further
frames must contain the same channels (in the same order). Otherwise a stream error is
generated.

* Atrajectory stream must consist of at least two frames (start frame and end frame).

+ The movement between the support points is linearly interpolated by the controller (this is
the default setting, see subsection 2.18.3 "Options"). If a manipulator is supposed to perform
an accelerated movement along the trajectory then the support points must be calculated
accordingly.

+ Channels that are not participating in the stream can still be fully controlled, while channels
that are currently streamed may answer with a SA_CTI_ERROR_BUSY_STREAMING error
code (see A.1) when sending certain configuration or movement commands.

* The sensors of all participating positioners must be enabled (in particular, the power save
mode is not allowed, see section 2.11 "Sensor Power Modes".

+ Note that the trajectory stream defines the target position movement profile for all partici-
pating positioners. The control-loop does "it's best" to move all positioners as close as possi-
ble along the defined trajectory. Nonetheless the actual current positions will deviate a little
bit from the target positions. To optimize the closed-loop performance and to reduce the
following error it may be necessary to modify the tuning parameters for the positioners. See
section 2.6.3 "Custom Positioner Types" for more information. The Following Error may be
polled to determine the difference while performing the movement. Furthermore, the "Fol-
lowing Error Detection" may be used to monitor (and potentially abort) the trajectory on a
defined deviation.

Flow Control

When the host transmits stream frames to the controller they are stored in a (FIFO) stream buffer
in the controller. The controller then executes the buffered frames synchronously. While the
frames are executed at a constant rate (the stream rate that the user has configured), the rate
at which the controller receives frames from the host may vary. Typically the rate is considerably

MCS2 Programmer’s Guide _

2 GENERAL CONCEPTS

higher or frames arrive in bursts with intermissions (or both), e.g. due to USB / Ethernet latency or
application interruption by the operating system (see figure 2.9).

Host MCS2 Controller Stage
Stream Data Stream Data o
79% full o
Junnnnnn S o (o) o
Variable Constant o
Frame Rate Frame Rate o

Figure 2.9: Flow Control

The library implements a flow control mechanism to prevent a buffer overflow on the controller:

+ Ifthe SA_CTI_StreamFrame function is called faster than the configured stream rate then
the function may block from time to time, therefore implementing the flow control.

+ Ifthe SA_CTI_StreamFrame function is called slower than the configured stream rate then
the streaming will eventually fail with a buffer underflow error.

The controller’s stream buffer can hold up to 1024 tuples’ and while it allows a synchronized
and consistent stream, it also induces a delay to the incoming frames. This delay depends on
the controller's buffer size, the number of channels that participate in the stream as well as the
configured stream rate and can be determined by the following formula:

buffer size
stream rate [Hz] x number of stream channels

execution delay [s] =

E.g. a stream with a frame containing three tuples (position data for three channels) and a config-
1024
ured stream rate of 1000 Hz would induce a constant buffer delay of ————=10.341s.
1000 Hz * 3

2.18.2 Basic Approach

To execute a trajectory stream the following steps must be performed:

1. Configure the stream rate by writing the Stream Base Rate property (see section 4.10). This
defines the rate (in Hz) with which the frames of the trajectory are executed.

2. Move all positioners that participate in the trajectory to their starting position (first frame
of the stream). Otherwise starting the stream will likely cause unexpected behavior, since
stream frames hold absolute position values and therefore the first frame could cause very
high velocities that cannot be performed mechanically.

3. Openastream by callingthe SA_CTL_OpenStreamfunction. It returns a stream handle that
must be passed to the following function calls to associate them with the opened stream.

'Atuple consists of a target position and it's corresponding channel, see 2.18.1 (General Streaming Concept).

MCS2 Programmer’s Guide _

2 GENERAL CONCEPTS

4. Supply the stream data by calling the SA_CTL_StreamFrame function once per frame that
should be executed. Note: This function may block if the flow control needs to throttle the
data rate. The function returns as soon as the frame was transmitted to the controller.

5. Close the stream by calling the SA_CTIL_CloseStream function. To the controller this
marks the end of the stream. If the stream is not closed properly with this function call
(or aborted by calling SA_CTL_AbortStream)then the controller will generate a buffer un-
derflow error after the last frame has been executed.

NOTICE

Behavioral differences when closing or aborting a stream:

As already described, all incoming frames are stored in an intermediate buffer by
the device (see Flow Control). The basic approach, after having sent all frames

to the device, is to call SA_CTL_CloseStream. This leads to execution of all
pending frames and thus finishing the stream at the given position(s). If a stream
is to be stopped immediately, the SA_CTL_AbortStream function can be used.
This leads to a trajectory stop, while remaining frames already sent to the device
are discarded.

2.18.3 Options

Before calling the SA_CTL_OpenStream function the Stream Options property can be configured
to define the stream’s behavior. This property holds a bit mask which is outlined in the following
table.

[wmmw Short Description

0 Disable Linear Interpolation Disable the linear interpolation between consecutive
stream target positions.

Undefined flags are reserved for future use. These flags should be set to zero.

Disable Linear Interpolation (streaming options 0x00 or 0x01)

By default, the path between consecutive stream target positions is linearly interpolated. In some
applications this behavior might be unwanted. The interpolation can therefore be disabled using
this option, resulting in a point-to-point movement with the configured stream rate.

2.18.4 Trigger Modes

A trajectory stream may be configured to be triggered (started) by various events. For example,
in some situations it can be useful to synchronize the stream rate of a trajectory with an external
clock. A camera could then take snap shots with a frequency of 10 Hz while the stage moves along
a trajectory with a time resolution of 200 Hz.

MCS2 Programmer’s Guide _

2 GENERAL CONCEPTS

The desired trigger mode is passed to the SA_CTL_OpenStream function. The following trigger
modes are available:

* SA_CTL_STREAM_TRIGGER_MODE_DIRECT (0)
* SA_CTL_STREAM_TRIGGER_MODE_EXTERNAL_ONCE (1)
* SA_CTL_STREAM_TRIGGER_MODE_EXTERNAL_SYNC (2)

* SA_CTL_STREAM_TRIGGER_MODE_EXTERNAL (3)

Please note that in order to use the external trigger modes, the Input Trigger must be configured
accordingly. Refer to section 2.20 "Input Trigger" on how to configure the device for triggered
streaming.

Direct Mode

In this mode the stream is started as soon as the stream buffer on the controller contains enough
data or has been closed (at which pointa SA_CTL_EVENT_STREAM_READY event is generated).

External Once Mode

In this mode the stream is started by an external trigger that is fed into the device. Once the
stream buffer on the controller contains enough data or has been closed a
SA_CTL_EVENT_STREAM READY event is generated to indicate that the stream is ready to be
triggered by the external trigger. In this armed state the device waits for the trigger to occur and
then generates a SA_CTL_EVENT_STREAM_TRIGGERED event. Further triggers are ignored in
this mode.

External Synchronization Mode

This mode is used to synchronize the stream rate with an external clock which may be fed into
the MCS2 controller. When the Stream External Sync Rate property is configured with the external
clock rate then the trajectory stream will be synchronized with the external clock.

External Clock J_I_I_I_I_I_I_ 3 cycles
Internal Clock

motsynenronizedy | LI LI LI L L L L LT L L rocyces
Internal Clock
eynemonzedy | LI 1L LT LI L LT L L L L ooaes

< At >

Figure 2.10: External synchronization with a 3:1 clock ratio
Figure 2.10 shows an example where the base stream rate is (should be) three times faster than

the external sync rate (e.g. external 100 Hz, internal 300 Hz). The upper clock trace shows the
external clock which makes 3 cycles within a given time window (4t). The middle clock trace shows

MCS2 Programmer’s Guide O

2 GENERAL CONCEPTS

the internal clock while not being synchronized, being a speck too fast and making 10 cycles within
the same time window. In the lower clock trace the internal clock is synchronized, making 9 clock
cycles within the time window as desired. As a result the synchronization prevents the clocks from
drifting apart.

NOTICE

The external synchronization feature has some restrictions that should be noted:

* In order to use the external synchronization feature the MCS2 controller
must be equipped with an appropriate I/0 Module.

* The Stream Base Rate must be a whole-number multiple of the external
clock rate.

+ The external clock rate may not be higher than the Stream Base Rate.

External

In this mode, the external clock defines the streamrate and fully controls the trajectory’s start and
further execution. With each incoming trigger, the next support point of the given trajectory is
targeted. Note that the maximum stable frequency for the input signal is limited e.g. depending
on the number of involved channels (see Maximum Stream Rates).

Further implications when using the external trigger mode are:

+ the configured Stream Base Rate is ignored
+ the configured Stream External Sync Rate is ignored
+ the internal linear interpolation is disabled (see Options)

2.18.5 Stream Events

A trajectory stream that is started always generates the following events (in the order given):

1. SA_CTL_EVENT_STREAM_READY This event is generated as soon as the internal stream
buffer of the device contains enough frames to start the stream without risking an immediate
buffer underflow. The default buffer threshold is 50%. In case the stream is very short this
event is generated as soon as the stream is closed.

2. SA_CTL_EVENT_STREAM_TRIGGERED This event is generated as soon as the device has
started to execute the stream. In case of direct streaming the Stream Ready and the Stream
Triggered events are generated at the same time. In case of externally triggered streaming
the Stream Triggered event is delayed until the external trigger is detected which effectively
starts the stream execution.

3. SA_CTI_EVENT_STREAM_FINISHED This eventis generated when the stream has stopped
executing. The event parameter indicates the result of the streaming. This could be a nor-
mal termination (SA_CTL_ERROR_NONE when executed to the last frame) or an error code
specifying the reason for the abnormal termination.

MCS2 Programmer’s Guide O

2 GENERAL CONCEPTS

2.18.6 Maximum Stream Rates

The maximum stable stream rate to be configured depends on the general communication load as
well as the number of involved channels. The more channels are included in the trajectory stream,
the higher the device’s stream load. Table 2.3 shows possible stream rates for different number of
streaming channels.

Channels Stream Channels Stream Channels Stream
Rate [HZ] Rate [HZ] Rate [HZz]
7 480 13 260

1 1000

2 1000 8 420 14 240
3 1000 9 370 15 220
4 840 10 340 16 210
5 670 11 300 17 200
6 560 12 280 18 190

Table 2.3: Stream Rate examples

For a more accurate determination of the maximum stream rate for the current setup the Stream
Load Maximum property can be monitored while streaming. The property acts like a peak detec-
tor. The highest load level generated by the currently running stream is stored and may be read
in percent with the Stream Load Maximum property. When starting the stream the load value is
reset to zero.

It is recommended to configure the trajectory stream (e.g. the Stream Base Rate) with some head-
room to the maximum load to guarantee a stable operation. If an overload is detected the trajec-
tory stream aborts with an SA_CTL_ERROR_SYNC_FAILED error.

Note that channels which are not part of the current stream can be fully controlled while a stream
is running. However, doing so always generates some peak load which must be considered. Note
further that streaming to multiple channels with high stream rates may also affect the perfor-
mance for operations concerning other channels.

2.19 Auxiliary Inputs and Outputs

The MCS2 device offers auxiliary inputs and outputs to interface to external equipment.

NOTICE

The device must be equipped with an additional I/0 module to use auxiliary in-

puts and outputs. The characteristics as well as the number of inputs and out-
puts vary depending on the specific type of I/O module. Please refer to the MCS2
User Manual for detailed electrical specifications.

MCS2 Programmer’s Guide _

2 GENERAL CONCEPTS

2.19.1 Digital Device Input

Digital device inputs allow to synchronize movements to external events. Synchronizing the tra-
jectory streaming or triggering command groups as well as aborting movements by triggering an
emergency stop is possible. This feature is called "Input Trigger". See section 2.20 "Input Trigger"
for the configuration of the input trigger.

2.19.2 Fast Digital Outputs

Fast digital outputs may be used to trigger external equipment like detectors or cameras depend-
ing on the current position of a positioner. This feature is called "Output Trigger". See section 2.21
"Output Trigger" for the configuration of the output trigger.

2.19.3 General Purpose Digital Inputs/Outputs

General purpose digital inputs and outputs may be used to control lights, relays, dispensers, etc.
or to read the state of safety switches, light barriers, etc.

Digital Inputs

The Aux Digital Input Value property may be used to read the digital inputs of an I/0 module. The
first bit (bit 0) of the input value corresponds to the first digital input (GP-DIN-1), the second bit (bit
1) corresponds to the second input (GP-DIN-2) and so on.

It is possible to enable an event notification for the digital inputs to be notified if an input changes.
Thus, continuous polling of the Aux Digital Input Value property can be avoided. To enable the
event set the SA_CTL_IO_MODULE_OPT_BIT_EVENTS_ENABLED bit of the I/0O Module Options
property to one. Whenever a change of one or more of the general purpose digital inputs hap-
pens the device generates a SA_CTL_EVENT_DIGITAL_INPUT_CHANGED event with its parame-
ter holding the new state of the inputs. Note that the input state capture frequency for the event
generation is limited to approx. 100 Hz. See section 2.4 "Event Notifications" for more information
on receiving events.

Example:

SA_CTL_Result_t result;
// read the digital inputs
int32_t input;
result = SA_CTL_GetProperty_1i32 (dHandle, O,
SA_CTL_PKEY_AUX_DIGITAL_INPUT_VALUE, &input, O
)
if (result == SA_CTL_ERROR_NONE) {
// ‘input ' holds the value of the digital inputs
}
// enable the digital input changed event
result = SA_CTL_SetProperty_132(
dHandle, 0, SA_CTL_PKEY_TIO_MODULE_OPTIONS,

MCS2 Programmer’s Guide O

2 GENERAL CONCEPTS

SA_CTL_IO_MODULE_OPT_BIT_EVENTS_ENABLED

)i
// —> receive event using the SA CTL _WaitForEvent () function

Digital Outputs

NOTICE
The digital output driver circuit is disabled by default and must be enabled by

setting the SA_CTL_IO_MODULE_OPT_BIT DIGITAL_OUTPUT_ENABLED bit
of the I/0 Module Options property.

The following properties may be used to modify the digital outputs:
+ The Aux Digital Output Value property sets all outputs at once to a defined value.

* The Aux Digital Output Set property sets all specified outputs to one without modifying the
other ones.

+ The Aux Digital Output Clear property clears all specified outputs without modifying the
other ones.

The first bit (bit 0) of the output value corresponds to the first digital output (GP-DOUT-1), the sec-
ond bit (bit 1) corresponds to the second output (GP-DOUT-2) and so on. Note that the general
purpose outputs are designed as open-collector outputs. This means that the output logic is in-
verted. Writing a one to an output switches the output transistor on which leads to a low signal
level at the output pin. The following code shows how to modify digital outputs of an I/0 module:

SA_CTL_Result_t result;

// set the output driver voltage level to 5V

result = SA_CTL_SetProperty_1i32 (dHandle, O,
SA_CTL_PKEY_TIO_MODULE_VOLTAGE, SA_CTL_IO_MODULE_VOLTAGE_5V

)

if (result) { /* handle error, abort =/ }

// enable the digital output driver circuit of the I/0 module

result = SA_CTL_SetProperty_i32 (dHandle, O,
SA_CTL_PKEY_TO_MODULE_OPTIONS,
SA_CTL_IO_MODULE_OPT_BIT_DIGITAL_OUTPUTS_ENABLED

)

if (result) { /* handle error, abort =/ }

// first set all digital outputs of the I/O module to a specific value

// note: electrical levels are inverted due to the open-collector outputs

// DoUT-4 | DOUT-3 | DOUT-2 | DOUT-1 |

// H(I1) [L(0) [H(1) [L(0) /

result = SA_CTL_SetProperty_i32 (dHandle, O,
SA_CTL_PKEY_AUX_DIGITAL_OUTPUT_VALUE, 0x00000005

)i

if (result) { /% handle error, abort =*/ }

MCS2 Programmer’s Guide _

2 GENERAL CONCEPTS

// next set output 2 (DOUT-2) without modifying the other outputs

// DOUT-4 | DOUT-3 | DOUT-2 | DOUT-1 |

// H(1) | L(0) | L(0) /| L(0) /

result = SA_CTL_SetProperty_i32 (dHandle, O,
SA_CTL_PKEY_AUX_DIGITAL_OUTPUT_SET, 0x00000002

)i

if (result) { /% handle error, abort =*/ }

// last clear output 1 (DOUT-1) without modifying the other outputs

// DOUT-4 | DOUT-3 | DOUT-2 | DOUT-1 |

// H(1) | L(0) | L(0) [H(I) /

result = SA_CTL_SetProperty_i32 (dHandle, O,
SA_CTL_PKEY_AUX_DIGITAL_OUTPUT_CLEAR, 0x00000001

)

2.19.4 Fast Analog Inputs

Fast analog inputs may be used to read analog voltage signals. An application can poll the Aux I/0
Module InputO / Input1 Value properties and use the data for further processing. The I/0 module
has a total number of six analog inputs which are mapped in groups of two to the channels of the
corresponding driver module. The following table shows the combinations of channel index and
property which must be used to read the input values of the six analog inputs:

AIN-1 0 SA_CTL_PKEY_AUX_IO_MODULE_INPUTO_VALUE
AIN-2 1 SA_CTL_PKEY_AUX_IO_MODULE_INPUTO_VALUE
AIN-3 2 SA_CTL_PKEY_AUX_IO_MODULE_INPUTO_VALUE
AIN-4 0 SA_CTL_PKEY_AUX_TO_MODULE_INPUT1_VALUE
AIN-5 1 SA_CTL_PKEY_AUX_TIO_MODULE_INPUT1_VALUE
AIN-6 2 SA_CTL_PKEY_AUX_TO_MODULE_INPUT1_VALUE

The following code shows how to read the first analog input assigned to the second channel (chan-
nel index 1) of a device (AIN-2):

SA_CTL_Result_t result;

int64_t input;

result = SA_CTL_GetProperty_i64 (dHandle, 1,
SA_CTL_PKEY_AUX_ IO_MODULE_INPUTO_VALUE, &input, O

)

if (result == SA_CTL_ERROR_NONE) {
// ‘input ' holds the value of the analog input AIN-2

MCS2 Programmer’s Guide _

2 GENERAL CONCEPTS

2.19.5 Using Analog Inputs as Control-Loop Feedback

The MCS2 supports to feed external analog signals into the control-loop of a channel. This allows
to implement applications like aligning a sample depending on the light intensity of an external
light detector or force feedback for a gripper, etc. These tasks require a more complex configura-
tion which is described in the following.

Note that the total number of six analog inputs of the I/0 module are mapped in groups of two
to the channels of the corresponding driver module. This means that per channel only two of the
analog inputs may be used as control-loop feedback. (See Aux I/0 Module Input Index property).

CAUTION

It is the user’s responsibility to guarantee that a valid signal is fed into the input
and that all properties (input ranges, PID parameters, etc.) are configured to rea-

sonable values before enabling the closed-loop operation. Configuring inappro-
priate values may result in unstable or unexpected behavior of the positioners
and potential damage of the stage.

To use an auxiliary input as control-loop feedback the following properties must be configured:

* The actual analog input must be selected with the Aux Input Select and Aux 1/0 Module
Input Index properties.

* The analog input range must be selected with the 170 Module Analog Input Range property.

* The Aux Positioner Type must be set to a custom positioner type slot. This slot must be
configured with a set of PID parameters with the Tuning and Customizing Properties. Note
that not all positioner type properties have a meaning when used as auxiliary positioner
type. The following properties are of interest to configure the PID loop: Positioner P Gain,
Positioner | Gain, Positioner D Gain, Positioner Anti Windup, Positioner PID Shift, Positioner
Target Hold Threshold. A dead band or dead zone for the input signal may be configured
with the Positioner Target Hold Threshold property.

+ Depending on the specific application and the type of feedback signal it may be necessary to
disable the endstop detection by setting the Positioner ESD Distance Threshold property to
zero. Whenever the auxiliary input value represents a set-point for the control-loop instead
of a current position of the positioner the endstop detection must be disabled. (E.g. a force
signal in a force-feedback-gripper application defines the set-point and does not follow the
actual position.)

+ The modifications should be saved to a custom positioner type slot with the Save Positioner
Type property.

* The direction sense of the feedback must be defined with the Aux Direction Inversion prop-
erty. It must match the direction sense of the control-loop output. Otherwise a runaway
condition may occur when commanding a closed-loop movement.

* The Control Loop Input property must be setto SA_CTL_CONTROL_LOOP_INPUT_AUX_IN
to feed the auxiliary input signal into the PID controller.

MCS2 Programmer's Guide O

2 GENERAL CONCEPTS

Using an auxiliary input as control-loop feedback has some special characteristics which need to
be considered:

* The SA_CTL_CH_STATE_BIT_SENSOR_PRESENT flag of the Channel State refers to the
position control-loop input. The auxiliary input signal is always treated as ‘present’ for the
control-loop.

+ The auxiliary input value is reflected in the ‘current position’ of a channel, even if the rep-
resentation of the input signal has a physical unit different from ‘position’. Commanding
the channels ‘target position’ with the SA_CTL_Move function always refers to the absolute
value and range of the input signal.

+ The auxiliary input signal is defined as absolute value, thus it is not possible to define a
logical scale offset, e.g. by setting the position with the Position property. Doing so affects
the position calculation of an integrated sensor of a positioner (if there is one). Several
properties give access to the position of an integrated sensor as well as the auxiliary input
values regardless of the actual signal currently used as feedback signal. Refer to figure 2.11
for the different signal paths and properties in this context.

+ Two positioner type slots are used to define the tuning parameters of the control-loop:

- The Aux Positioner Type property defines a set of tuning parameters which is used if an
auxiliary input provides the control-loop feedback.
- The Positioner Type property defines the parameters for all other configurations.

The corresponding set of parameters is configured implicitly when changing the control-loop
input. This allows to switch between two operation modes without manually reconfiguring
the control-loop tuning.

The following figure shows the auxiliary input configuration for each channel:

Module channel: 0-n

Auxiliary-Property-Category
AUX_DIRECTION_INVERSION* »

Positioner-Property-Category

Sensor-Module

Position
Sensor

positioner control

———————— %4 AUX_SM_INPUTO_VALUE parameter

————*» AUX_SM_INPUT1_VALUE

SENSOR_INPUT_SELECT*

SMinputO » CONTROL_LOOP_INPUT*

POS |POSITION PID

Aux Inputs CALC

AUX_INPUT_SELECT*

SENSOR D/A > AMP

SMinput1 ™

1

1

1

1

1

1

1

1

1

1

1

1

1

! "y

positioner
M l CALC_SYS| _ 203

1

1

1

1

1

1

1

1

1

1

1

1

1

1

AUX_SENSOR_MODULE_INPUT_INDEX*
AUX_IO_MODULE_INPUT_INDEX*

10-Module

AUX_IN
x
O |y pOSITION

e POSITION_MEAN_SHIFT*
commanded target position
("Move") 64) TARGET_POSITION

|
|

|

|

|

|

|

|

|

! 0
|

|

|

T

|

|

|

|

' 10
|

10Input1/-2 /-3

Analog
Inputs

10Input4/-5/-6

int6d

——— > AUX_IO_INPUTO_VALUE LIy CL_INPUT_SENSOR_VALUE

L M, AUX_IO_INPUT1_VALUE = CLINPUT_AUX_VALUE

* persistent properties are marked with an asterisk, default selectors are printed in bold

Figure 2.11: Auxiliary Input Configuration (per channel)

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

2.19.6 Analog Outputs

Analog outputs generate analog voltage control signals for external amplifiers, dispensers etc.

NOTICE

The analog output driver circuit is in a high-impedance state by default. There-

fore, the SA_CTIL_ IO MODULE_OPT BIT ANALOG_OUTPUT_ENABLED bit of
the I/0 Module Options property must be set to enable the output driver.

The Aux Analog Output ValueO / Value1 properties may be used to output an analog voltage on
the 1/0 module analog outputs (AOUT-1 and AOUT-2).

The following code shows how to set both analog outputs of an I/0 module:

SA_CTL_Result_t result;

// set the output value of analog output(O (AOUT-1) to zero

// which corresponds to 0V

result = SA_CTL_SetProperty_i32 (dHandle, O,
SA_CTL_PKEY_AUX_ ANALOG_OUTPUT_VALUEO, O

)

if (result) { /+ handle error, abort =/ }

// set the output value of analog outputl (AOUT-2) to max

// which corresponds to +10V

result = SA_CTL_SetProperty_i32 (dHandle, O,
SA_CTL_PKEY_AUX_ANALOG_OUTPUT_VALUEl, 32768

)

if (result) { /# handle error, abort x/ }

2.20 Input Trigger

Digital input triggers allow to synchronize the device to external clock signals or events. The input
trigger may be used as an emergency stop input, to synchronize the trajectory streaming or to
trigger command groups (e.g. a group of movement commands).

NOTICE

In order to use the input trigger the device must be equipped with an additional

|/0 module.

The following properties may be used to configure the input trigger:

+ The Device Input Trigger Mode property defines how the device reacts to incoming trigger
signals. The available trigger modes are described in more detail in the following sections.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

* The Device Input Trigger Condition property defines whether to react to rising or falling
edges.

2.20.1 Disabled Mode

This is the default mode in which all activities on the input line are ignored.

2.20.2 Emergency Stop Mode

The emergency stop input trigger mode allows to use the input trigger to issue an emergency stop.
In terms of the MCS2 an emergency stop stops all active movements. More precisely, the device
will hard-stop all channels and aborts active streams and command groups. Note that channels
moving with acceleration control active will also be stopped immediately. For Magnetic Driver
the behavior on an emergency stop is configurable. (See Positioner Control Options property.)
The desired behavior how to handle the emergency stop situations can further be configured by
setting the Emergency Stop Mode property to one of the following modes:

SA_CTL_EMERGENCY_STOP_MODE_NORMAL This is the default mode. In this mode the config-
ured input trigger condition issues an emergency stop. After such an event the device con-
tinues to behave normally.

SA_CTL_EMERGENCY_ STOP_MODE_RESTRICTED In this mode the configured input trigger con-
dition will issue an emergency stop and make the device enter a locked state. In this state
you may communicate with the device normally, but all movement commands will respond
with a SA_CTL_EVENT_MOVEMENT_FINISHED event with its parameter set to
SA_CTL_ERROR_MOVEMENT_LOCKED. The locked state may be reset by setting the emer-
gency stop mode to any valid value, thereby unlocking the movement again.

SA_CTL_EMERGENCY_STOP_MODE_AUTO_RELEASE In this mode the configured input trigger
condition will issue an emergency stop and make the device enter a locked state. In this
state you may communicate with the device normally, but all movement commands will re-
spond with a SA_CTL_EVENT_MOVEMENT_FINISHED event with its parameter set to
SA_CTL_ERROR_MOVEMENT_LOCKED. This state remains until either the emergency stop
mode is set to any valid value or the input trigger line is released (inverse edge is detected).

The following code gives an example for the configuration of the input trigger when used as emer-
gency stop. After a successful configuration a falling edge on the input trigger will issue an emer-
gency stop. The following behavior is defined by the configured emergency stop mode (in this case
the device continues normally).

SA_CTL_Result_t result;
// set input trigger mode to emergency stop
result = SA_CTL_SetProperty_132(
dHandle,
0 l4
SA_CTL_PKEY DEV_INPUT_TRIG_MODE,
SA_CTL_DEV_INPUT_TRIG_MODE_EMERGENCY_STOP

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

if (result) { /# handle error, abort =/ }
// set input trigger condition to falling edge
result = SA_CTL_SetProperty_132(
dHandle,
Ol
SA_CTL_PKEY_ _DEV_INPUT_TRIG_CONDITION,
SA_CTL_TRIGGER_CONDITION_FALLING
)
if (result) { /* handle error, abort =/ }
// configure emergency stop mode
result = SA_CTL_SetProperty_132(
dHandle,
OI
SA_CTL_PKEY_ EMERGENCY_STOP_MODE,
SA_CTL_EMERGENCY_STOP_MODE_NORMAL
)i
if (result) { /# handle error, abort =/ }

2.20.3 Stream Sync Mode

The stream sync input trigger mode allows to use the streaming's external trigger modes. Calling
SA_CTIL_OpenStream with one of the following modes will start resp. synchronize the stream to
the input trigger.

* SA_CTL_STREAM_TRIGGER_MODE_EXTERNAL_ONCE
* SA_CTL_STREAM_TRIGGER_MODE_EXTERNAL_SYNC
* SA_CTL_STREAM TRIGGER_MODE_EXTERNAL

See section 2.18 "Trajectory Streaming" for more information.

The following code gives an example for the configuration of the input trigger when used to start
the stream. After a successful configuration a stream is opened with trigger mode external once
parameter. If the stream is ready (stream ready event received), a rising edge on the input trigger
will start the trajectory’s execution.

SA_CTIL_StreamHandle_t sHandle;
SA_CTL_Result_t result;
// set input trigger mode to stream sync
result = SA_CTL_SetProperty_132(

dHandle,

OI

SA_CTL_PKEY_DEV_INPUT_TRIG_MODE,

SA_CTL_DEV_INPUT_TRIG_MODE_STREAM
)
if (result) { /# handle error, abort =/ }
// set input trigger condition to rising edge
result = SA_CTL_SetProperty_132(

dHandle,

Ol

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

SA_CTL_PKEY_DEV_INPUT_TRIG_CONDITION,
SA_CTL_TRIGGER_CONDITION_RISING
)
if (result) { /* handle error, abort =/ }
// open stream with trigger mode external once
result = SA_CTL_OpenStream
dHandle,
&sHandle,
SA_CTL_STREAM TRIGGER_MODE_EXTERNAL_ONCE
)
if (result) { /x handle error, abort */ }
VA
// start streaming frames to the device
/..
// >> stream ready event <<
// device is now waiting for the external trigger condition to start
// the stream

2.20.4 Command Group Sync Mode

The command group sync input trigger mode allows to use the command groups external trigger
mode. Calling SA_CTI_OpenCommandGroup with the trigger mode
SA_CTL_CMD_GROUP_TRIGGER_MODE_EXTERNAL will then delay the groups execution until the
external input trigger occurs. See section 2.17 "Command Groups" for more information.

The following code gives an example for the configuration of the input trigger when used for
starting command groups. After a successful configuration of the input trigger a command group
is opened with the external trigger mode parameter, filled (e.g. with SA_CTL_Move commands)
and then closed. The groups execution though is delayed until the device detects a rising edge on
the input trigger.

SA_CTL_TransmitHandle_t tHandle;
SA_CTL_Result_t result;
// set input trigger mode to cmd group Ssync
result = SA_CTL_SetProperty_132(
dHandle,
0,
SA_CTL_PKEY_DEV_INPUT_TRIG_MODE,
SA_CTL_DEV_INPUT_TRIG_MODE_CMD_GROUP
)
if (result) { /# handle error, abort =/ }
// set input trigger condition to rising edge
result = SA_CTL_SetProperty_132(
dHandle,
Ol
SA_CTL_PKEY_DEV_INPUT_TRIG_CONDITION,
SA_CTL_TRIGGER_CONDITION_RISING
)i

if (result) { /% handle error, abort =/ }

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

// open command group with trigger mode external
result = SA_CTL_OpenCommandGroup (
dHandle,
&tHandle,
SA_CTL_CMD_GROUP_TRIGGER_MODE_EXTERNAL
)i
if (result) { /% handle error, abort =*/ }
//
// fill command group
//
// close command group
result = SA_CTL_CloseCommandGroup (dHandle, tHandle);
if (result) { /% handle error, abort =/ }
// command group 1s now walting for the external trigger condition

2.20.5 Event Trigger Mode

The event input trigger mode allows to get a notification whenever an electrical trigger signal was
detected on the trigger input. This mode is useful to simply inform the software about the occur-
rence of an external trigger signal without any further actions on the controller.

Note that the maximum frequency of the input signal should be limited to 500 Hz in this mode.

The following code gives an example for the configuration of the input trigger when used to get
event notifications. After a successful configuration a rising edge on the input trigger will generate
an external input triggered event.

SA_CTL_Result_t result;
// set input trigger mode to event trigger
result = SA_CTL_SetProperty_132(
dHandle,
0,
SA_CTL_PKEY_DEV_INPUT_TRIG_MODE,
SA_CTL_DEV_INPUT_TRIG_MODE_EVENT
)
if (result) { /* handle error, abort =/ }
// set input trigger condition to rising edge
result = SA_CTL_SetProperty_132(
dHandle,
Ol
SA_CTL_PKEY_DEV_INPUT_TRIG_CONDITION,
SA_CTL_TRIGGER_CONDITION_RISING
)i
if (result) { /% handle error, abort =/ }
// wait for events
SA_CTL_Event_t event;
result = SA_CTL_WaitForEvent (dHandle, &event, SA_CTL_INFINITE) ;
if (result) { /# handle error, abort =/ }

/7

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

2.21 Output Trigger

In some applications it is useful to have the controller output a trigger signal each time the position
of a channel has made a certain increment or the target position has been reached. The trigger
signals may then be used by external logic (e.g. to trigger a camera).

NOTICE

In order to use the output trigger signals the device must be equipped with an

additional 1/0 module. Since each I/0 module is connected to a specific driver
module the output trigger signals are assigned to the channels of the corre-
sponding driver module.

The following properties may be used to configure the output trigger:

* The Channel Output Trigger Mode property defines what is output to the corresponding
output pin. The available trigger modes are described in more detail in the following sec-
tions.

« The Channel Output Trigger Polarity property defines the polarity of the output trigger
signal.

+ The Channel Output Trigger Pulse Width property specifies the pulse width of a trigger
output pulse.

* The I/0 Module Options property bit
SA CTL_IO MODULE _OPT BIT DIGITAL OUTPUT ENABLED must be set to enable the
output driver circuit.

* The I/0 Module Voltage selects the output voltage of the pin.

Note that the I/0 module settings are global for all output channels of the I/0 module. The follow-
ing example code enables the output trigger and configures the output voltage to 5V.

SA_CTL_Result_t result;
// set the output driver voltage level to 5V
result = SA_CTL_SetProperty_1i32 (
dHandle,
0 r
SA_CTL_PKEY_ IO_MODULE_VOLTAGE,
SA_CTL_TIO_MODULE_VOLTAGE_5V
)
if (result) { /x handle error, abort */ }
// enable the output driver circuit of the I/0O module
result = SA_CTL_SetProperty_132(
dHandle,
0 ’
SA_CTL_PKEY_ TIO_MODULE_OPTIONS,
SA_CTL_TIO_MODULE_OPT_BIT_DIGITAL_OUTPUT_ENABLED
)

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

if (result) { /# handle error, abort =/ }

2.21.1 Constant Mode

This is the default mode in which a constant level is output. The level corresponds to the inactive
state of the configured Channel Output Trigger Polarity.

The following example shows how user defined levels can be output in this mode.

SA_CTL_Result_t result;
result = SA_CTIL_SetProperty_132(
dHandle,
2!
SA_CTL_PKEY_ CH_OUTPUT_TRIG_POLARITY,
SA_CTL_TRIGGER_POLARITY ACTIVE_HIGH
)i
if (result) { /% handle error, abort =*/ }
result = SA_CTL_SetProperty_132(
dHandle,
2!
SA_CTL_PKEY_ _CH_OUTPUT_TRIG_MODE,
SA_CTL_CH_OUTPUT_TRIG_MODE_CONSTANT
)
if (result) { /* handle error, abort =/ }
// output of channel 2 level is now low
// perform some tasks...
result = SA_CTL_SetProperty_132(
dHandle,
2!
SA_CTL_PKEY_ _CH_OUTPUT_TRIG_POLARITY,
SA_CTL_TRIGGER_POLARITY ACTIVE_LOW
)i
if (result) { /% handle error, abort =*/ }
// output of channel 2 level is now high

2.21.2 Position Compare Mode

The position compare mode allows to generate trigger signals according to the current position of
a positioner. One independent trigger per channel is available.

The following properties must be used to configure the position compare component:

+ Channel Position Compare Start Threshold
* Channel Position Compare Increment

+ Channel Position Compare Direction

* Channel Position Compare Limit Min

* Channel Position Compare Limit Max

MCS2 Programmer’s Guide _

2 GENERAL CONCEPTS

These properties must be configured differently according to the required operation. The start
threshold and the increment span a raster of trigger positions over the positioners travel range.
A dynamic threshold value is used internally to define a trigger position. The current position is
compared against this threshold and the trigger is generated once the threshold has been passed.
The threshold value is then shifted according to the configured parameters to define the next
trigger position. The compare direction and a minimum and maximum position compare limit
may be configured additionally to limit the active range and to define the trigger behavior.

The following sections describe the different configurations.

Direction SA_CTI_FORWARD DIRECTION or SA_CTIL_BACKWARD DIRECTION without limits

In this configuration the Channel Position Compare Direction is set to
SA_CTL_FORWARD_DIRECTION or SA_CTL_BACKWARD_DIRECTION and
the Channel Position Compare Limit Min and Channel Position Compare
Limit Max are not active. (Set to the same value to disable the limit checks.)
The position compare component will then only trigger on the next thresh-
old in the configured direction without ever being reset again. This means
that on the same position there will never be more than one trigger. To re-
set the component the Channel Position Compare Start Threshold must be
set again.

Xa

In the image the thresholds are marked with dotted lines with the green solid line being the move-
ment of the positioner. Every red X marks a trigger position.

Direction SA_CTIL_EITHER DIRECTION without limits

In this configuration the Channel Position Compare Direction is set to
SA_CTL_EITHER DIRECTION and the Channel Position Compare Limit
Min and Channel Position Compare Limit Max are not active. (Set to the
same value to disable the limit checks.) The position compare component
will trigger in both directions, ignoring the most recent threshold, especially
not triggering indefinitely when stopping right on a threshold position. This
means that specific positions may trigger the output more than once but
only if a different trigger position has been reached in the meantime.

Xa

The image shows equal behavior to the previous example except that the
same physical position triggers the output more than once.

Direction SA_CTL_FORWARD_DIRECTION or SA_CTL_BACKWARD_DIRECTION with limits

In this configuration the Channel Position Compare Direction issetto SA_CTI,_FORWARD_DIRECTION
or SA_CTL_BACKWARD_DIRECTION and the Channel Position Compare Limit Min and Channel
Position Compare Limit Max are active. This configuration is also called "line scanning" mode. Line
scanning means that positions in one moving direction trigger the output but not in the other di-
rection. The configured limits define a window between a min and a max position. Outside this
window no pulses will be generated.

MCS2 Programmer's Guide O

2 GENERAL CONCEPTS

The advantage of the limit configuration is that no manual reset of the start ~ *
threshold by writing the corresponding property is necessary. The thresh-
old will be reset automatically once a limit position has been passed. Note
that the limit positions should be defined with sufficient tolerance to reliably
pass the last threshold while moving.

This configuration is especially useful to implement raster scanning applica-
tions where e.g. an X/Y stage moves a sample along a specific trajectory
and a detector must be triggered according to the current position of a sample. With the X-
positioner being moved while inside the window and the Y-positioner at the turning points of
the X-positioner.

The image depicts the limits with a blue solid line, each threshold with a black dotted line and the
current position with a green solid line. Every red X marks a trigger position. Once the max limit
position has been passed the threshold is reset so that after passing the min limit position the
output trigger pulses will be generated again.

Direction SA_CTIL_EITHER DIRECTION with limits

In this configuration the Channel Position Compare Directionis setto SA_CTL_EITHER_DIRECTION
and the Channel Position Compare Limit Min and Channel Position Compare Limit Max are active.
This configuration is also called "snake scanning" mode.

The snake scanning mode acts as if there were two "line scanning" modes

active, one for each direction. This means that positions within a window will

trigger the output in one direction and as soon as the limit has been passed ma}——— A
trigger the output in the opposite direction again. In other words, the active AL\
trigger direction is flipped every time the corresponding limit position has ,/é\\

been passed. Note that the limit positions should be defined with sufficient " .
tolerance to reliably pass the last threshold while moving. This mode allows ~ °
automatic operation without any further configuration while performing the
movements.

The image depicts the limits with a blue solid line, each threshold with a black dotted line and the
current position with a green solid line. Every red X marks a trigger position.

Line Scanning Programming Example

The following code gives an example for the configuration of the output trigger for channel 1.
The movement is commanded with its reversal points defined to 0 and 5 mm. After enabling the
trigger the channel will generate a 1 ps pulse (0.5 ps high, 0.5 ps low) once the position of channel
1 passed 2mm in forward direction (horizontal red line). Furthermore every 500 pm consecutive
pulses are output (displayed below the graph) until the max limit of 4.5mm was passed. This is
repeated for every movement starting from zero position.

SA_CTL_Result_t result;
result = SA_CTL_SetProperty_164 (
dHandle, 1,

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

Figure 2.12: Visualization of the example for using the output trigger mode

SA_CTL_PKEY_CH_POS_COMP_START_THRESHOLD, 2e9
)
if (result) { /* handle error, abort =/ }
result = SA_CTL_SetProperty_164 (
dHandle, 1,
SA_CTL_PKEY_CH_POS_COMP_INCREMENT, 500e6
)
if (result) { /* handle error, abort =/ }
result = SA_CTL_SetProperty_132(
dHandle, 1,
SA_CTL_PKEY_CH_POS_COMP_DIRECTION,
SA_CTL_FORWARD_DIRECTION
)
if (result) { /* handle error, abort =/ }

result = SA_CTIL_SetProperty_164 (
dHandle, 1,
SA_CTL_PKEY_CH_POS_COMP_LIMIT_MIN, 500e6
)
if (result) { /# handle error, abort =/ }
result = SA_CTL_SetProperty_164(
dHandle, 1,
SA_CTL_PKEY_CH_POS_COMP_LIMIT_MAX, 4500e6
)
if (result) { /* handle error, abort =/ }
result = SA_CTL_SetProperty_132(
dHandle, 1,
SA_CTL_PKEY_CH_OUTPUT_TRIG_POLARITY,
SA_CTL_TRIGGER_POLARITY ACTIVE_HIGH

)i

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

if (result) { /# handle error, abort =/ }
result = SA_CTL_SetProperty_132(
dHandle, 1,
SA_CTL_PKEY_ CH_OUTPUT_TRIG_PULSE_WIDTH, 1000
)i
if (result) { /x handle error, abort */ }
result = SA_CTL_SetProperty_132(
dHandle, 1,
SA_CTL_PKEY_ _CH_OUTPUT_TRIG_MODE,
SA_CTL_CH_OUTPUT_TRIG_MODE_POSITION_COMPARE
)i
if (result) { /% handle error, abort =*/ }
// start movement between position 0 and 5mm

2.21.3 Target Reached Mode

The target reached mode allows to generate a pulse once a closed-loop movement command
finished and the positioner reached its target position. The pulse is only generated for successfully
finished movement commands.

The following code gives an example for the configuration of the target reached output trigger for
channel 1. After enabling the trigger the output of the channel will generate a pulse of defined
length once the target position of a movement has been reached. Note that the configured pulse
width includes the duration of the pulse as well as the duration of the pause. When setting the
pulse width to 1000 ns pulses with 500 ns high level and 500 ns low level will be generated.

SA_CTL_Result_t result;
result = SA_CTL_SetProperty_132(
dHandle,
ll
SA_CTL_PKEY_CH_OUTPUT_TRIG_POLARITY,
SA_CTL_TRIGGER_POLARITY_ ACTIVE_HIGH
)i
if (result) { /% handle error, abort =*/ }
result = SA_CTL_SetProperty_132(
dHandle,
ll
SA_CTL_PKEY_CH_OUTPUT_TRIG_PULSE_WIDTH,
1000
)
if (result) { /* handle error, abort =/ }
result = SA_CTL_SetProperty_132(
dHandle,
1,
SA_CTL_PKEY_CH_OUTPUT_TRIG_MODE,
SA_CTL_CH_OUTPUT_TRIG_MODE_TARGET_REACHED
)
if (result) { /# handle error, abort =/ }

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

2.21.4 Actively Moving Mode

The actively moving mode generates an output level similar to the actively moving Channel State
bit. The output level is in the active state while the positioner is moving and inactive otherwise.

The following example code configures channel 2 to output a high level while the positioner is
moving.

SA_CTL_Result_t result;
result = SA_CTL_SetProperty_132(
dHandle,
2 ’
SA_CTL_PKEY_ _CH_OUTPUT_TRIG_POLARITY,
SA_CTL_TRIGGER_POLARITY ACTIVE_HIGH
)
if (result) { /# handle error, abort =/ }
result = SA_CTL_SetProperty_132(
dHandle,
2 4
SA_CTL_PKEY_ _CH_OUTPUT_TRIG_MODE,
SA_CTL_CH_OUTPUT_TRIG_MODE_ACTIVELY_ _MOVING
)i
if (result) { /% handle error, abort =/ }

2.22 Phasing of Magnetic Driven Positioners

To drive brushless permanent magnet positioners the controller must know the absolute position
of the slider within a magnetic period. Since the position sensor works on an incremental basis the
absolute position is unknown at startup. The controller performs a special routine to establish the
phasing reference. For this the coils are driven in a defined pattern while monitoring the reaction
of the positioner. This sequence is known as "phasing".

The phasing is started automatically when the amplifier is enabled by setting the Amplifier Enabled
property to SA_CTL_ENABLED (0x01). Note that external force or displacement must not be
applied to the positioner while the sequence is running. The phasing takes some time to complete.
During this time the SA_CTL_CH_STATE_BIT_ACTIVELY_MOVING Channel State bit is set.

Once the sequence has finished a SA_CTI,_EVENT_PHASING_FINISHED eventis generated. The
parameter of the event holds a SA_CTL_ERROR_TIMEOUT error in case the phasing could not
determine the phase offset. Note that in this case the amplifier will also be disabled again.

If the phasing was successful the SA_CTL_CH_STATE_BIT_IS_PHASED Channel State bit is set
and the channel enters the closed-loop holding state.

MCS2 Programmer’s Guide “ _

2 GENERAL CONCEPTS

CAUTION
Note that the phasing routine induces some motion of the positioner while run-

ning. As a safety precaution, make sure that the positioner has enough freedom
to move without damaging other equipment.

The phasing is invalidated in the following cases:

+ The positioner is detached from the channel

* The Logical Scale Inversion property is modified

* The Positioner Type property is modified

* The sensor is disabled with the Sensor Power Mode property

Subsequently the control-loop and the amplifier are disabled.

WARNING

Magnetic driven positioners are not self-locking. Disabling the control-loop re-

moves any holding force from the positioner. Make sure not to damage any
equipment when the positioner changes its position unintentionally!

2.23 Feature Permissions

The MCS2 has a feature permission system which allows to activate special features via an soft-
ware activation process without physically returning the controller to SmarAct. New features may
be unlocked by upgrading the controller with an upgrade file. The MCS2 Service Tool is used to
perform this upgrade. Please contact SmarAct for the details on purchasing a feature upgrade.

Currently the following features are available:

* Low Vibration Actuator Mode (Actuator Mode property)’

+ Advanced Sensor Correction (Signal Correction Options property)’

In case that a feature is not activated on a controller, trying to enable it will generate a
SA_CTL_ERROR_PERMISSION_DENIED errofr.

"This feature is only available for Stick-Slip Piezo Driver.

MCS2 Programmer’s Guide “ _

3 FUNCTION REFERENCE

NOTICE

All functions of the library use the cdec1 calling convention. Some development

environments, such as Delphi, use stdcall by default. This must be taken into
account when importing the library functions.

3.1 Function Summary

Table 3.1 - Function Summary

Function Name

SA_CTL_GetFullVersionString

SA_CTL_GetResultInfo

SA_CTL_GetEventInfo

SA_CTL_FindDevices

SA_CTL_Open
SA_CTIL_Close
SA_CTL_Cancel

SA_CTL_GetProperty_132

SA_CTL_SetProperty_ 132

SA_CTL_SetPropertyArray_i32

SA_CTL_GetProperty_i64

SA_CTL_SetProperty_1i64

Short Description

Returns the version of the library asa 97
human readable string.

Returns a human readable error string 98
for the given error code.

Returns a human readable info string 99
for the given event.

Returns a list of locator strings of avail- 100
able devices.

Opens a connection to a device. 102
Closes a connection to a device. 103
Unblocks all blocking API calls. 104

Directly returns the value of a 32-bit in- 105
teger property.

Directly sets the value of a 32-bitinteger 107
property.

Directly sets the value of a 32-bitinteger 108
array property.

Directly returns the value of a 64-bit in- 109
teger property.

Directly sets the value of a 64-bitinteger 110
property.
Continued on next page

MCS2 Programmer’s Guide “ _

3 FUNCTION REFERENCE

Table 3.1 - Continued from previous page

SA_CTL_SetPropertyArray_i64 Directly sets the value of a 64-bitinteger 111
array property.

SA_CTL_GetProperty_s Directly returns the value of a string 112
property.

SA_CTL_SetProperty_s Directly sets the value of a string prop- 114
erty.

SA_CTL_RequestReadProperty Requests the value of a property (non- 115
blocking).

SA_CTL_ReadProperty_i32 Reads the value of a requested 32-bitin- 117
teger property.

SA_CTL_ReadProperty_i64 Reads the value of a requested 64-bitin- 118
teger property.

SA_CTL_ReadProperty_s Reads the value of a requested string 119
property.

SA_CTL_RequestWriteProperty_ i32 Requests to write the value of a 32-bit 121

integer property (non-blocking).

SA_CTL_RequestWriteProperty 164 Requests to write the value of a 64-bit 123
integer property (non-blocking).

SA_CTIL_RequestWriteProperty_s Requests to write the value of a string 124
property (non-blocking).

SA_CTI_RequestWritePropertyArray_i32 Requests to write the value of a 32-bit 125
integer array property (non-blocking).

SA_CTL_RequestWritePropertyArray i64 Requests to write the value of a 64-bit 126
integer array property (non-blocking).

SA_CTL_WaitForWrite Waits until a write operation has fin- 127
ished.

SA_CTL_CancelRequest Cancels a non-blocking read or writere- 128
quest.

SA_CTL_CreateOutputBuffer Opens up an output buffer for delayed 129

transmission of several commands.

SA_CTL_FlushOutputBuffer Flushes an output buffer and triggers 130
the transmission to the device.

SA_CTL_CancelOutputBuffer Cancels an output buffer and discards 131
all buffered commands.

SA_CTL_OpenCommandGroup Opens up an atomic command group. 132

Continued on next page

MCS2 Programmer’s Guide “ _

3 FUNCTION REFERENCE

Table 3.1 - Continued from previous page

SA_CTL_CloseCommandGroup Flushes a command group and makes 133
all commands of the group take effect.

SA_CTL_CancelCommandGroup Cancels a command group and discards 134
all buffered commands.
SA_CTL_WaitForEvent Listens to events from the device. 135
SA_CTL_Calibrate Performs a calibration. 137
SA_CTL_Reference Performs a finding of a reference mark. 139
SA_CTL_Move Performs a movement. 141
SA_CTL_Stop Aborts all ongoing movements. 143
SA_CTL_OpenStream Opens a stream. 144
SA_CTL_StreamFrame Sends a previously assembled frame to 146
the device.
SA_CTL_CloseStream Closes a stream. 148
SA_CTL_AbortStream Aborts a stream. 150

MCS2 Programmer’s Guide “ _

3 FUNCTION REFERENCE

3.2 Detailed Function Description

3.2.1 SA_CTL_GetFullVersionString
Interface:

const charx SA_CTL_GetFullVersionString();

Description:

This function returns the version of the library as a null terminated string.

Parameters:

none
Example:

cout << "version is: " << SA_CTL_GetFullVersionString() << endl;

MCS2 Programmer’s Guide _

3 FUNCTION REFERENCE

3.2.2 SA_CTL_GetResultinfo

Interface:

const charx SA_CTL_GetResultInfo(
SA_CTL_Result_t result
)

Description:

All functions of the library return a result code that indicates success or failure of execution. This
function may be used to translate a result code into a human readable text string, e.g. to be output
on a console or a GUI element.

Parameters:

* result (SA_CTL_Result_t), input: The error code.

Example:

SA_CTL_Result_t result;
SA_CTL_DeviceHandle_t dHandle;

result = SA_CTL_Open (&dHandle, "usb:sn:MCS2-00000001", "");
if (result != SA_CTL_ERROR_NONE) {
cout << "Error occurred: " << SA_CTL_GetResultInfo(result) << endl;

MCS2 Programmer’s Guide “ _

3 FUNCTION REFERENCE

3.2.3 SA_CTL_GetEventinfo

Interface:

const charx SA_CTL_GetEventInfo (
const SA_CTL_Event_t =xevent
)

Description:

On successful return of a call to SA_CTI,_WaitForEvent this function may be used to translate
an event into a human readable text string, e.g. to be output on a console or a GUI element.

NOTICE

The string returned by this function resides in thread-local storage and remains

valid only until the next call of this function.

Parameters:

* event (const SA_CTL_Event_t *), input: Pointer to a buffer which holds an event returned
from SA_CTL_WaitForEvent

Example:

SA_CTL_Event_t event;
SA_CTL_Result_t result = SA_CTL_WaitForEvent (
dHandle,
&event,
SA_CTL_INFINITE
)
if (result == SA_CTL_ERROR_NONE) {
cout << "Received Event: " << SA_CTL_GetEventInfo (&event) ;
cout << endl;

See also:

SA_CTL_WaitForEvent

MCS2 Programmer’s Guide “ _

3 FUNCTION REFERENCE

3.2.4 SA _CTL_FindDevices

Interface:

SA_CTL_Result_t SA_CTIL_FindDevices (
const char xoptions,
char xdevicelist,
size_t *devicelistLen

)i

Description:

This function writes a list of locator strings of devices that are connected to the PC into devicelist.
The function lists devices with a USB or ethernet interface. The options parameter contains a list
of configuration options for the find procedure. The caller must pass a pointer to a char buffer
in deviceList and set devicelistLen to the size of the buffer. On success the function writes a list
of device locators into devicelist and the number of characters written into devicelistLen. If the
supplied buffer is too small to contain the generated list, the buffer will contain no valid content
but devicelistLen contains the required buffer size (in characters).

NOTICE

For devices with ethernet interface the Network Discover Mode must be set to

passive or active mode to enable the find procedure.

Parameters:

* options (const char *), input: Options for the find procedure (see section 2.1.3).

* devicelList (char *), output: Pointer to a buffer which holds the device locators after the func-
tion has returned. The locator strings are separated by a newline character.

* devicelistLen (size_t *), input/output: Specifies the size (in bytes) of outList before the func-
tion call. After the function call it holds the number of characters written to deviceList.

Example:

char buffer[4096];
size_t bufferSize = sizeof (buffer);
SA_CTL_Result_t result = SA_CTL_FindDevices ("",buffer, &é8bufferSize);
if (result == SA_CTL_ERROR_NONE) {
// buffer holds the locator strings, separated by ’‘\n’
// bufferSize holds the number of characters written to the buffer

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

See also:

4.3.8 Network Discover Mode

MCS2 Programmer’s Guide i

3 FUNCTION REFERENCE

3.2.5 SA_CTL_Open

Interface:

SA_CTL_Result_t SA_CTL_Open (
SA_CTL_DeviceHandle_t =*dHandle,
const char =xlocator,
const char xconfig

)7

Description:

Establishes a connection to a device for communication. Note that the overall device state is not
changed. For example, settings made in previous sessions are preserved. Even ongoing move-
ments are not interrupted by connecting to or disconnecting from the device.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t *), output: Handle to the device. Must be passed to fol-
lowing function calls.
* locator (const char *), input: Specifies the device (see section 2.1.1).

* config (const char *), input: Currently unused.
Example:

SA_CTL_Result_t result;
SA_CTL_DeviceHandle_t dHandle;
result = SA_CTL_Open (&dHandle, "usb:sn:MCS2-00000001", "");
if (result == SA_CTL_ERROR_NONE) {
// success

See also:

SA_CTL _Close

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.6 SA _CTL_Close

Interface:

SA_CTL_Result_t SA_CTL_Close(
SA_CTL_DeviceHandle_t dHandle

) ;

Description:

Closes a previously established connection to a device.

It is safe to call this function while other threads are still using the device, e.g., waiting for an event
with SA_CTL_WaitForEvent. All blocking functions will be unblocked and will return with an
SA_CTL_ERROR_CANCELED error.

After calling this function the device handle becomes invalid.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
Example:

SA_CTL_Result_t result;
SA_CTL_DeviceHandle_t dHandle;
result = SA_CTL_Open (&dHandle, "usb:sn:MCS2-00000001", "");
if (result == SA_CTL_ERROR_NONE) {
// success
result = SA_CTL_Close (dHandle) ;

See also:

SA_CTL_Open

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.7 SA _CTL_Cancel

Interface:

SA_CTL_Result_t SA_CTL_Cancel (
SA_CTL_DeviceHandle_t dHandle
)

Description:

This function unblocks a waiting SA_CTL_WaitForEvent call. If no thread is currently waiting,
the next callto SA_CTL_WaitForEvent will be canceled. The unblocked function will return with
an SA_CTL_ERROR_CANCELED error.

Calling this function before SA_CTIL_Close is not required for proper cleanup.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

See also:

SA_CTL_WaitForEvent, SA_CTIL_Close

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.8 SA_CTL_GetProperty_i32

Interface:

SA_CTL_Result_t SA_CTL_GetProperty_1i32(
SA_CTL_DeviceHandle_t dHandle,
int8_t idx,

SA_CTL_PropertyKey_t pkey,
int32_t =*value,
size_t =xioArraySize

) ;

Description:

This function retrieves a 32-bit integer property value (array) from the device. The caller must
supply a pointer to a buffer where the result should be written to as well as a size information
which indicates how many values may be written into the buffer. The function then writes the
resulting value(s) into the buffer and sets the size information to the number of values written.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

* idx (int8_t), input: Index of the addressed device, module or channel (see section 2.2).
+ pkey (SA_CTL_PropertyKey_t), input: Key that identifies the property.

* value (int32_t *), output: Pointer to a buffer where the result should be written to.

* i0ArraySize (size_t *), input/output: Pointer to a size value that must contain the size of
the value buffer (in number of elements, not number of bytes) when the function is called.
On function return it contains the number of values written to the buffer. A null pointer is
allowed which implicitly indicates an array size of 1.

Example:

// get single value (number of bus modules)
int32_t numModules;
SA_CTIL_Result_t result;
result = SA_CTL_GetProperty_132(
dHandle, 0, SA_CTL_PKEY_NUMBER_OF_BRUS_MODULES, &numModules, O
)i
if (result == SA_CTL_ERROR_NONE) {
// numModules holds the number of modules
}
// get value array
// firmware version properties are arrays of four int32 values

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

int32_t fwVersion([4];
size_t ioArraySize = 4;
result = SA_CTL_GetProperty_132(
dHandle, 0, SA_CTL_PKEY_ FIRMWARE_VERSION, fwVersion, &§ioArraySize
)i
if (result == SA_CTL_ERROR_NONE) {
// 10ArraySize holds the number of elements
// fwVersion holds the firmware version (rev., update, minor, major)

See also:

SA_CTL_SetProperty_1i32, SA_CTL_GetProperty_1i64,
SA_CTL_GetProperty_s

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.9 SA_CTL_SetProperty_i32
Interface:
SA_CTL_Result_t SA_CTL_SetProperty_1i32(
SA_CTL_DeviceHandle_t dHandle,
int8_t idx,
SA_CTL_PropertyKey_t pkey,

int32_t wvalue

)7

Description:

This function writes a 32-bit integer property value to the device.

Parameters:

dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

idx (int8_t), input: Index of the addressed device, module or channel (see section 2.2).

pkey (SA_CTL_PropertyKey_t), input: Key that identifies the property.

value (int32_t), input: Value that should be written.
Example:

// set move mode
SA_CTL_Result_t result;
result = SA_CTL_SetProperty_132(
dHandle, 0, SA_CTL_PKEY_MOVE_MODE, SA_CTL_MOVE_MODE_STEP
)
if (result == SA_CTL_ERROR_NONE) {
// move mode for channel 0 is set to step mode (open—loop)

}

See also:

SA_CTL_GetProperty_1i32, SA_CTL_SetProperty_1i64,
SA_CTL_SetProperty_s

MCS2 Programmer’s Guide i

3 FUNCTION REFERENCE

3.2.10 SA_CTL_SetPropertyArray_i32

Interface:

SA_CTL_Result_t SA_CTL_SetPropertyArray_1i32(
SA_CTL_DeviceHandle_t dHandle,
int8_t idx,
SA_CTL_PropertyKey_t pkey,
const 1nt32_t =xvalues
size_t arraySize

) ;

Description:

This function writes multiple 32-bit integer values to the device and is used for setting array type
properties. The caller must supply a pointer to a buffer containing the values as well as a size
information which indicates how many values reside in the buffer.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

idx (int8_t), input: Index of the addressed device, module or channel (see section 2.2).

pkey (SA_CTL_PropertyKey_t), input: Key that identifies the property.
* values (const int32_t *), input: Pointer to a buffer that must contain the values to be written.

* arraySize (size_t), input: Size value that must contain the size of the value buffer (in number
of elements, not number of bytes) when the function is called.

See also:

SA_CTL_GetProperty_1i32, SA_CTL_SetPropertyArray_1i64

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.11 SA_CTL_GetProperty_ i64

Interface:

SA_CTL_Result_t SA_CTL_GetProperty_1i64(
SA_CTL_DeviceHandle_t dHandle,
int8_t idx,

SA_CTL_PropertyKey_t pkey,
int64_t =*value,
size_t =xioArraySize

) ;

Description:

This function retrieves a 64-bit integer property value (array) from the device. The caller must
supply a pointer to a buffer where the result should be written to as well as a size information
which indicates how many values may be written into the buffer. The function then writes the
resulting value(s) into the buffer and sets the size information to the number of values written.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

* idx (int8_t), input: Index of the addressed device, module or channel (see section 2.2).
+ pkey (SA_CTL_PropertyKey_t), input: Key that identifies the property.

* value (int64_t *), output: Pointer to a buffer where the result should be written to.

* i0ArraySize (size_t *), input/output: Pointer to a size value that must contain the size of
the value buffer (in number of elements, not number of bytes) when the function is called.
On function return it contains the number of values written to the buffer. A null pointer is
allowed which implicitly indicates an array size of 1.

Example:

See example on page 105.

See also:

SA_CTL_SetProperty_1i64, SA_CTL_GetProperty_1i32,
SA_CTL_GetProperty_s

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.12 SA_CTL_SetProperty_i64

Interface:

SA_CTL_Result_t SA_CTL_SetProperty_i64(
SA_CTL_DeviceHandle_t dHandle,
int8_t idx,

SA_CTL_PropertyKey_t pkey,
int6e4_t wvalue

)7

Description:

This function writes a 64-bit integer property value to the device.

Parameters:

dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

idx (int8_t), input: Index of the addressed device, module or channel (see section 2.2).

pkey (SA_CTL_PropertyKey_t), input: Key that identifies the property.

value (int64_t), input: Value that should be written.

Example:

See example on page 107.

See also:

SA_CTL_GetProperty_1i64, SA_CTL_SetProperty_i32,
SA_CTL_SetProperty_s

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.13 SA_CTL_SetPropertyArray_i64

Interface:

SA_CTL_Result_t SA_CTL_SetPropertyArray_1i64 (
SA_CTL_DeviceHandle_t dHandle,
int8_t idx,
SA_CTL_PropertyKey_t pkey,
const 1int64_t =xvalues
size_t arraySize

) ;

Description:

This function writes multiple 64-bit integer values to the device and is used for setting array type
properties. The caller must supply a pointer to a buffer containing the values as well as a size
information which indicates how many values reside in the buffer.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

idx (int8_t), input: Index of the addressed device, module or channel (see section 2.2).

pkey (SA_CTL_PropertyKey_t), input: Key that identifies the property.
* values (const int64_t *), input: Pointer to a buffer that must contain the values to be written.

* arraySize (size_t), input: Size value that must contain the size of the value buffer (in number
of elements, not number of bytes) when the function is called.

See also:

SA_CTL_GetProperty_i64, SA_CTL_SetPropertyArray_1i32

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.14 SA_CTL_GetProperty_s

Interface:

SA_CTL_Result_t SA_CTL_GetProperty_s(
SA_CTL_DeviceHandle_t dHandle,
int8_t idx,
SA_CTL_PropertyKey_t pkey,
char =xvalue,
size_t =xioArraySize

) ;

Description:

This function retrieves a string property value (array) from the device. The caller must supply
a pointer to a buffer where the result should be written to as well as a size information which
indicates how many bytes may be written into the buffer. The function then writes the resulting
string(s) into the buffer and sets the size information to the number of characters written. The
null termination of a string implicitly serves as a separator in case multiple strings are returned.

Parameters:

dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

idx (int8_t), input: Index of the addressed device, module or channel (see section 2.2).

pkey (SA_CTL_PropertyKey_t), input: Key that identifies the property.

value (char *), output: Pointer to a buffer where the result should be written to.

ioArraySize (size_t *), input/output: Pointer to a size value that must contain size of the value
buffer (in bytes) when the function is called. On function return it contains the number of
characters written to the buffer.

Example:

char deviceSerial[128];
size_t len = sizeof (deviceSerial);
SA_CTL_Result_t result;
result = SA_CTL_GetProperty_s(
dHandle, 0, SA_CTL_PKEY_DEVICE_SERIAL_NUMBER,deviceSerial, &len
)
if (result == SA_CTL_ERROR_NONE) {
// deviceSerial holds the unique serial number of the device
// len holds the length of the string
}

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

See also:

SA_CTL_SetProperty_s, SA_CTL_GetProperty_i32,
SA_CTL_GetProperty_i64

MCS2 Programmer’s Guide 13

3 FUNCTION REFERENCE

3.2.15 SA_CTL_SetProperty_s

Interface:

SA_CTL_Result_t SA_CTL_SetProperty_1i32(
SA_CTL_DeviceHandle_t dHandle,
int8_t idx,

SA_CTL_PropertyKey_t pkey,
const char =xvalue

)7

Description:

This function writes a string property value to the device. Note that the length of strings may never
exceed 63 characters (plus a null terminator).

Parameters:

dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

idx (int8_t), input: Index of the addressed device, module or channel (see section 2.2).

pkey (SA_CTL_PropertyKey_t), input: Key that identifies the property.

* value (const char *), input: String that should be written.
Example:

SA_CTL_Result_t result;
result = SA_CTL_SetProperty_s(
dHandle, 0, SA_CTL_PKEY_DEVICE_NAME, "MyFavoriteController"
)
if (result == SA_CTL_ERROR_NONE) {
// success

See also:

SA_CTL_GetProperty_s, SA_CTL_SetProperty_i32,
SA_CTL_SetProperty_1i64

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.16 SA_CTL_RequestReadProperty

Interface:

SA_CTL_Result_t SA_CTL_RequestReadProperty (
SA_CTL_DeviceHandle_t dHandle,
int8_t idx,
SA_CTL_PropertyKey_t pkey,
SA_CTL_RequestID_t *rID,
SA_CTL_TransmitHandle_t tHandle

)i

Description:

This function requests to read a property value (array) from the device and can be used for asyn-
chronous (non-blocking) access. The caller must supply a pointer to a buffer where the request ID
should be written to. Received values can be accessed later via the obtained request ID and the
corresponding SA_CTL_ReadProperty_x functions.

The advantage of this method is that the application may request several property values in fast
succession and then perform other tasks before blocking on the reception of the results.

NOTICE

The correct SA_CTL_ReadProperty_x function must be used depending on

the data type of the requested property. Otherwise the read will fail with a
SA_CTL_ERROR_INVALID_DATA_TYPE errofr.

Parameters:

dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

idx (int8_t), input: Index of the addressed channel or module (see section 2.2).

pkey (SA_CTL_PropertyKey_t), input: Key of the property that is requested.

riD (SA_CTL_RequestID_t *), output: Pointer to a request ID.

tHandle (SA_CTL_TransmitHandle_t), input: Optional ID to a transmit buffer. If unused set to
zero.

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

Example:

// Note: to keep the example clear, we omit processing the result codes
SA_CTL_Request_t rID[2];
int64_t position;
int32_t state;
// Issue requests for the two properties "position" and "channel state"
SA_CTL_RequestReadProperty (
dHandle, 0, SA_CTL_PKEY_POSITION, &rID[O], O
)
SA_CTL_RequestReadProperty (
dHandle, 0, SA_CTL_PKEY CHANNEL_STATE, &rID[1], O
)
// process other tasks
//
// Receive the results
SA_CTL_ReadProperty_i64 (dHandle, rID[O0], &position, O0);
SA_CTL_ReadProperty_i32 (dHandle, rID[1l], &state, 0);

See also:

SA_CTL_ReadProperty_i32, SA_CTL_ReadProperty_i64,
SA_CTL_ReadProperty_s

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.17 SA_CTL_ReadProperty_i32

Interface:

SA_CTL_Result_t SA_CTL_ReadProperty_ 132 (
SA_CTL_DeviceHandle_t dHandle,
SA_CTL_RequestID_t rID,
int32_t =*value,
size_t xioArraySize

)7

Description:

This function reads a 32-bit integer property value (array) that has previously been requested using
SA_CTL_RequestReadProperty.

NOTICE

While the request-function is non-blocking the read-functions block until the de-

sired data has arrived.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
* rID (SA_CTL_RequestID_t), input: ID of the addressed request.
* value (int32_t *), output: Pointer to a buffer where the result should be written to.

* [oArraySize (size_t *), input/output: Pointer to a size value that must contain the size of
the value buffer (in number of elements, not number of bytes) when the function is called.
On function return it contains the number of values written to the buffer. A null pointer is
allowed which implicitly indicates an array size of 1.

Example:

See example on page 116.

See also:

SA_CTL_RequestReadProperty, SA_CTL_ReadProperty_1i64,
SA_CTL_ReadProperty_s

MCS2 Programmer’s Guide 117 _

3 FUNCTION REFERENCE

3.2.18 SA_CTL_ReadProperty_i64

Interface:

SA_CTL_Result_t SA_CTL_ReadProperty_ 164 (
SA_CTL_DeviceHandle_t dHandle,
SA_CTL_RequestID_t rID,
int64_t =*value,
size_t xioArraySize

)7

Description:

This function reads a 64-bit integer property value (array) that has previously been requested using
SA_CTL_RequestReadProperty.

NOTICE

While the request-function is non-blocking the read-functions block until the de-

sired data has arrived.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
* rID (SA_CTL_RequestID_t), input: ID of the addressed request.
* value (int64_t *), output: Pointer to a buffer where the result should be written to.

* [oArraySize (size_t *), input/output: Pointer to a size value that must contain the size of
the value buffer (in number of elements, not number of bytes) when the function is called.
On function return it contains the number of values written to the buffer. A null pointer is
allowed which implicitly indicates an array size of 1.

Example:

See example on page 116.

See also:

SA_CTL_RequestReadProperty, SA_CTL_ReadProperty_i32,
SA_CTL_ReadProperty_s

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.19 SA_CTL_ReadProperty s

Interface:

SA_CTL_Result_t SA_CTL_ReadProperty_s(
SA_CTL_DeviceHandle_t dHandle,
SA_CTL_RequestID_t rID,
char =xvalue,
size_t xioStringSize

)7

Description:

This function reads a string property value (array) that has previously been requested using
SA_CTL_RequestReadProperty.

NOTICE

While the request-function is non-blocking the read-functions block until the de-

sired data has arrived.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
* rID (SA_CTL_RequestID_t), input: ID of the addressed request.
* value (char *), output: Pointer to a buffer where the result should be written to.

* ijoStringSize (size_t *), input/output: Pointer to a size value that must contain size of the
value buffer (in bytes) when the function is called. On function return it contains the number
of characters written to the buffer.

Example:

// Note: to keep the example simple, we omit processing the result codes
SA_CTL_Request_t rID;
char deviceSerial[128];
size_t len = sizeof (deviceSerial);
// Issue request for the "device serial number" property
SA_CTL_RequestReadProperty (
dHandle, 0, SA_CTL_PKEY_DEVICE_SERIAL_NUMBER, &rID, O
)
// process other tasks

/Y oo

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

// Receive the result
SA_CTL_ReadProperty_s (dHandle, rID, deviceSerial, &len);

See also:

SA_CTL_RequestReadProperty, SA_CTL_ReadProperty_i32,
SA_CTL_ReadProperty_i64

MCS2 Programmer’s Guide 120 @

3 FUNCTION REFERENCE

3.2.20 SA_CTL_RequestWriteProperty_i32

Interface:

SA_CTL_Result_t SA_CTL_RequestWriteProperty_132 (
SA_CTL_DeviceHandle_t dHandle,
int8_t idx,
SA_CTL_PropertyKey_t pkey,
int32_t wvalue,
SA_CTL_RequestID_t *rID,
SA _CTL_TransmitHandle_ t tHandle
)i

Description:

This function writes a 32-bit integer value to the device and can be used for asynchronous (non-
blocking) access. The caller can supply a pointer to a buffer where the request ID should be written
to. The result (whether the write was successful or not) can be accessed later by passing the
obtained request ID to the SA_CTI,_WaitForWrite function.

The advantage of this method is that the application may write several property values in fast
succession and then perform other tasks before blocking on the reception of the results.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

* idx (int8_t), input: Index of the addressed channel or module (see section 2.2).

* pkey (SA_CTL_PropertyKey_t), input: Key of the property that should be accessed.
* value (int32_t), input: Value that should be written.

* rID (SA_CTL_RequestID_t *), output: Pointer to a request ID. Can be null pointer for call-and-
forget mechanism (see section 2.3.4).

* tHandle (SA_CTL_TransmitHandle_t), input: Optional ID to a transmit buffer. If unused set to
zero.

Example:

SA_CTL_Result_t result;
SA_CTL_RequestID_t rID;
int8_t channel;
int64_t holdTime = 5000;
// Request to set hold time to 5 seconds
result = SA_CTL_RequestWriteProperty_ 132 (
dHandle, channel, SA_CTL_PKEY_ _HOLD_TIME, holdTime, &rID, O

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

)i
// process other tasks

//
// Wait for the result to arrive
result = SA_CTL_WaitForWrite (dHandle, rID);

See also:

SA_CTL_WaitForWrite, SA_CTL_RequestWriteProperty_ 164,
SA_CTL_RequestWriteProperty_s

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.21 SA_CTL_RequestWriteProperty_i64

Interface:

SA_CTL_Result_t SA_CTL_RequestWriteProperty_1i64 (
SA_CTL_DeviceHandle_t dHandle,
int8_t idx,
SA_CTL_PropertyKey_t pkey,
int64_t wvalue,
SA_CTL_RequestID_t *rID,
SA _CTL_TransmitHandle_ t tHandle
)i

Description:

This function writes a 64-bit integer value to the device and can be used for asynchronous (non-
blocking) access. The caller can supply a pointer to a buffer where the request ID should be written
to. The result (whether the write was successful or not) can be accessed later by passing the
obtained request ID to the SA_CTI,_WaitForWrite function.

The advantage of this method is that the application may write several property values in fast
succession and then perform other tasks before blocking on the reception of the results.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

* idx (int8_t), input: Index of the addressed channel or module (see section 2.2).

* pkey (SA_CTL_PropertyKey_t), input: Key of the property that should be accessed.
* value (int64_t), input: Value that should be written.

* rID (SA_CTL_RequestID_t *), output: Pointer to a request ID. Can be null pointer for call-and-
forget mechanism (see section 2.3.4).

* tHandle (SA_CTL_TransmitHandle_t), input: Optional ID to a transmit buffer. If unused set to
zero.

Example:

See example on page 121.

See also:

SA_CTL_WaitForWrite, SA_CTL_RequestWriteProperty_1i32,
SA_CTL_RequestWriteProperty_s

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.22 SA_CTL_RequestWriteProperty_s

Interface:

SA_CTL_Result_t SA_CTL_RequestWriteProperty_s (
SA_CTL_DeviceHandle_t dHandle,
int8_t idx,
SA_CTL_PropertyKey_t pkey,
const char =*value,
SA_CTL_RequestID_t *rID,
SA _CTL_TransmitHandle_ t tHandle
)i

Description:

This function writes a string value to the device and can be used for asynchronous (non-blocking)
access. The caller can supply a pointer to a buffer where the request ID should be written to. The
result (whether the write was successful or not) can be accessed later by passing the obtained
request ID to the SA_CTI_WaitForWrite function.

The advantage of this method is that the application may write several property values in fast
succession and then perform other tasks before blocking on the reception of the results.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

* idx (int8_t), input: Index of the addressed channel or module (see section 2.2).

* pkey (SA_CTL_PropertyKey_t), input: Key of the property that should be accessed.
* value (const char *), input: Value that should be written.

* rID (SA_CTL_RequestID_t *), output: Pointer to a request ID. Can be null pointer for call-and-
forget mechanism (see section 2.3.4).

* tHandle (SA_CTL_TransmitHandle_t), input: Optional ID to a transmit buffer. If unused set to
zero.

Example:

See example on page 121.

See also:

SA_CTL_WaitForWrite, SA_CTL_RequestWriteProperty_1i32,
SA_CTL_RequestWriteProperty_i64

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.23 SA_CTL_RequestWritePropertyArray_i32

Interface:

SA_CTL_Result_t SA_CTL_RequestWritePropertyArray_1i32 (
SA_CTL_DeviceHandle_t dHandle,
int8_t idx,
SA_CTL_PropertyKey_t pkey,
int32_t =*values,
size_t arraySize,
SA_CTL_RequestID_t *rID,
SA_CTL_TransmitHandle_t tHandle
) ;

Description:

This function writes multiple 32-bit integer values to the device and can be used for asynchronous
(non-blocking) access of array type properties. The caller must supply a pointer to a buffer con-
taining the values as well as a size information which indicates how many values reside in the
buffer. Furthermore a pointer to a buffer where the request ID should be written to can be pro-
vided. The result (whether the write was successful or not) can be accessed later by passing the
obtained request ID to the SA_CTL_WaitForWrite function.

The advantage of this method is that the application may write several property values in fast
succession and then perform other tasks before blocking on the reception of the results.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

* idx (int8_t), input: Index of the addressed channel or module (see section 2.2).

+ pkey (SA_CTL_PropertyKey_t), input: Key of the property that should be accessed.

* values (int32_t *), input: Pointer to a buffer that must contain the values to be written.

* arraySize (size_t), input: Size value that must contain the size of the value buffer (in number
of elements, not number of bytes) when the function is called.

* rID (SA_CTL_RequestID_t *), output: Pointer to a request ID. Can be null pointer for call-and-
forget mechanism (see section 2.3.4).

* tHandle (SA_CTL_TransmitHandle_t), input: Optional ID to a transmit buffer. If unused set to
zero.

See also:

SA_CTL_WaitForWrite, SA_CTL_RequestWritePropertyArray_ 164

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.24 SA_CTL_RequestWritePropertyArray_i64

Interface:

SA_CTL_Result_t SA_CTL_RequestWritePropertyArray_1i64 (
SA_CTL_DeviceHandle_t dHandle,
int8_t idx,
SA_CTL_PropertyKey_t pkey,
int64_t *values,
size_t arraySize,
SA_CTL_RequestID_t *rID,
SA_CTL_TransmitHandle_t tHandle
) ;

Description:

This function writes multiple 64-bit integer values to the device and can be used for asynchronous
(non-blocking) access of array type properties. The caller must supply a pointer to a buffer con-
taining the values as well as a size information which indicates how many values reside in the
buffer. Furthermore a pointer to a buffer where the request ID should be written to can be pro-
vided. The result (whether the write was successful or not) can be accessed later by passing the
obtained request ID to the SA_CTL_WaitForWrite function.

The advantage of this method is that the application may write several property values in fast
succession and then perform other tasks before blocking on the reception of the results.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

* idx (int8_t), input: Index of the addressed channel or module (see section 2.2).

+ pkey (SA_CTL_PropertyKey_t), input: Key of the property that should be accessed.

* values (int64_t *), input: Pointer to a buffer that must contain the values to be written.

* arraySize (size_t), input: Size value that must contain the size of the value buffer (in number
of elements, not number of bytes) when the function is called.

* rID (SA_CTL_RequestID_t *), output: Pointer to a request ID. Can be null pointer for call-and-
forget mechanism (see section 2.3.4).

* tHandle (SA_CTL_TransmitHandle_t), input: Optional ID to a transmit buffer. If unused set to
zero.

See also:

SA_CTL_WaitForWrite, SA_CTL_RequestWritePropertyArray_ 132

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.25 SA _CTL_WaitForWrite

Interface:

SA_CTL_Result_t SA CTL_WaitForWrite (
SA_CTL_DeviceHandle_t dHandle,
SA_CTL_RequestID_t rID

)i

Description:

This function returns the result of a property write access that has previously been requested
using the data type specific SA_CTL_RequestWriteProperty_x function.

NOTICE

While the request-function is non-blocking the SA_CTL_WaitForWrite func-

tion blocks until the desired result has arrived.

Parameters:
* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
* rID (SA_CTL_RequestID_t), input: ID of the addressed request.

Example:

See example on page 121.

See also:

SA_CTL_RequestWriteProperty_i32, SA_CTL_RequestWriteProperty_ 164,
SA_CTL_RequestWriteProperty_s

MCS2 Programmer’s Guide =

3 FUNCTION REFERENCE

3.2.26 SA_CTL_CancelRequest

Interface:
SA_CTL_Result_t SA_CTL_CancelRequest (
SA_CTL_DeviceHandle_t dHandle,

SA_CTL_RequestID_t rID
)i

Description:

This function cancels a non-blocking read or write request.

NOTICE

Without output buffering the request has already been sent. In this case only

the answer/result will be discarded but property writes will still be executed.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
* rID (SA_CTL_RequestID_t), input: ID of the addressed request.

Example:

SA_CTL_Result_t result;
SA_CTL_RequestID_t rID;
// Request to set hold time to 5 seconds
result = SA_CTL_RequestWriteProperty_ 132 (
dHandle, 0, SA_CTL_PKEY_ _HOLD_TIME, 5000, &rID, O
)
// process other tasks
VI
// We are not interested in the result anymore and discard the request
result = SA_CTL_CancelRequest (dHandle, rID);

See also:

SA_CTL_RequestWriteProperty_i32, SA_CTL_RequestWriteProperty_1i64,
SA_CTL_RequestWriteProperty_s, SA_CTL_RequestReadProperty

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.27 SA_CTL_CreateOutputBuffer

Interface:

SA_CTL_Result_t SA_CTL_CreateOutputBuffer (
SA_CTL_DeviceHandle_t dHandle,
SA _CTL_TransmitHandle t xtHandle

)i

Description:

Creates an output buffer for optimizing communication throughput with the device using the
asynchronous command set. After creation the retrieved transmit handle can be used to choose
whether a command is to be buffered or sent directly. A buffered command is not sent to the de-
viceimmediately. Instead, the data is held back and stored in the internal buffer. You may accumu-
late several commands and then call SA_CTIL_FlushOutputBuffer to initiate the transmission
or SA_CTL_CancelOutputBuffer to cancel the output buffer.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
* tHandle (SA_CTL_TransmitHandle_t *), output: Pointer to a transmit handle.

Example:

// Note: to keep the example simple, we omit processing the result codes
SA_CTL_TransmitHandle_t tHandle;

SA_CTL_CreateOutputBuffer (dHandle, &tHandle);

SA_CTL_Move (dHandle, 0, 1000000, tHandle);

SA_CTL_Move (dHandle, 1, -1000000, tHandle);

// move commands have not been transmitted yet.
SA_CTL_FlushOutputBuffer (dHandle, tHandle);

// move commands have been transmitted and will be executed.

See also:

SA_CTL_FlushOutputBuffer, SA_CTL_CancelOutputBuffer

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.28 SA_CTL_FlushOutputBuffer

Interface:

SA_CTL_Result_t SA_CTL_FlushOutputBuffer (
SA_CTL_DeviceHandle_t dHandle,
SA_CTL_TransmitHandle_ t tHandle

)i

Description:

Initiates the transmission of all commands stored in the output buffer that is associated with the
given transmit handle.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
* tHandle (SA_CTL_TransmitHandle_t), input: Handle of the addressed transmit buffer.

Example:

SA_CTL_Result_t result;
SA_CTL_TransmitHandle_t tHandle;
result = SA_CTL_CreateOutputBuffer (dHandle, &tHandle);
if (result == SA_CTL_ERROR_NONE) {
// tHandle now holds a valid transmit handle
}
// append commands to buffer here
result = SA_CTL_FlushBuffer (dHandle, tHandle);
if (result == SA_CTL_ERROR_NONE) {
// buffer is now flushed and the transmit handle released
}

// process generated answers/events

See also:

SA_CTL_CreateOutputBuffer, SA_CTL_CancelOutputBuffer

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.29 SA_CTL_CancelOutputBuffer

Interface:

SA_CTL_Result_t SA_CTL_CancelOutputBuffer (
SA_CTL_DeviceHandle_t dHandle,
SA_CTL_TransmitHandle_ t tHandle

)i

Description:

Discards all buffered commands and releases the associated transmit handle.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
* tHandle (SA_CTL_TransmitHandle_t), input: Handle of the addressed transmit buffer.

Example:

SA_CTL_Result_t result;
SA_CTL_TransmitHandle_t tHandle;
result = SA_CTL_CreateOutputBuffer (dHandle, &tHandle);
if (result == SA_CTL_ERROR_NONE) {
// tHandle now holds a valid transmit handle
}
// append commands to buffer here
result = SA_CTL_CancelBuffer (dHandle, tHandle);
if (result == SA_CTL_ERROR_NONE) {
// all buffered commands are discarded and the transmit handle released

See also:

SA_CTL_CreateOutputBuffer, SA_CTL_FlushOutputBuffer

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.30 SA_CTL_OpenCommandGroup

Interface:

SA_CTL_Result_t SA_CTL_OpenCommandGroup (
SA_CTL_DeviceHandle_t dHandle,
SA_CTL_TransmitHandle_t =*tHandle,
uint32_t triggerMode

) ;

Description:

Opens a command group that can be used to combine multiple asynchronous commands into
an atomic group. A trigger mode can be set to select between different modes to start the
groups execution. After creation the retrieved transmit handle can be used to choose whether
a command is to be grouped or sent directly. You may accumulate several commands and then
call SA_CTL_CloseCommandGroup to activate or SA_CTIL_CancelCommandGroup to cancel the
command group.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
* tHandle (SA_CTL_TransmitHandle_t *), output: Pointer to a transmit handle.

* triggerMode (uint32_t), input: Desired trigger mode for this command group. Must be either
SA_CTL_CMD_GROUP_TRIGGER_MODE_DIRECT (0) or
SA_CTL_CMD_GROUP_TRIGGER_MODE_EXTERNAL (1).

Example:

SA_CTL_Result_t result;
SA_CTL_TransmitHandle_t tHandle;
result = SA_CTL_OpenCommandGroup (
dHandle, &tHandle, SA_CTL_CMD_GROUP_TRIGGER_MODE_DIRECT
)
if (result == SA_CTL_ERROR_NONE) {
// tHandle now holds a valid transmit handle

See also:

SA_CTL_CloseCommandGroup, SA_CTL_CancelCommandGroup

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.31 SA_CTL_CloseCommandGroup

Interface:

SA_CTL_Result_t SA_CTL_CloseCommandGroup (
SA_CTL_DeviceHandle_t dHandle,
SA_CTL_TransmitHandle_t tHandle

)i

Description:

Closes and eventually executes the assembled command group depending on the configured trig-
ger mode.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
* tHandle (SA_CTL_TransmitHandle_t), input: Handle of the addressed transmit buffer.

Example:

SA_CTL_Result_t result;
SA_CTL_TransmitHandle_t tHandle;
result = SA_CTL_OpenCommandGroup (
dHandle, &tHandle, SA_CTL_CMD_GROUP_TRIGGER_MODE_DIRECT
)
if (result == SA_CTL_ERROR_NONE) {
// tHandle now holds a valid transmit handle
}
// append commands to buffer here
result = SA_CTL_CloseCommandGroup (dHandle, tHandle);
if (result == SA_CTL_ERROR_NONE) ({
// command group 1is now activated. since the command group 1is
// triggered directly, it 1is executed right away.
}
// process other tasks
//
// optional: wait for the SA CTIL EVENT_CMD_GROUP_TRIGGERED event
// process answers/events to commands

See also:

SA_CTL_OpenCommandGroup, SA_CTL_CancelCommandGroup

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.32 SA_CTL_CancelCommandGroup

Interface:

SA_CTL_Result_t SA_CTL_CancelCommandGroup (
SA_CTL_DeviceHandle_t dHandle,
SA_CTL_TransmitHandle_t tHandle

)i

Description:

Discards all buffered commands and releases the associated transmit handle.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
* tHandle (SA_CTL_TransmitHandle_t), input: Handle of the addressed transmit buffer.

Example:

SA_CTL_Result_t result;
SA_CTL_TransmitHandle_t tHandle;
result = SA_CTL_OpenCommandGroup (
dHandle, &tHandle, SA_CTL_CMD_GROUP_TRIGGER_MODE_DIRECT
)i
if (result == SA_CTL_ERROR_NONE) {
// tHandle now holds a valid transmit handle
}
// append commands to buffer here
result = SA_CTL_CancelCommandGroup (dHandle, tHandle);
if (result == SA_CTL_ERROR_NONE) {
// all buffered commands are discarded and the transmit handle released

See also:

SA_CTL_OpenCommandGroup, SA_CTL_CloseCommandGroup

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.33 SA _CTL_WaitForEvent

Interface:

SA_CTL_Result_t SA_CTL_WaitForEvent (
SA_CTL_DeviceHandle_t dHandle,
SA_CTL_Event_t =xevent,
uint32_t timeout

) ;

Description:

This function blocks until the device reports an event. Usually this function is used in a separate
thread. The function returns when:

* An event has occurred within the given timeout. In this case the return value of the func-
tion will be SA_CTL_ERROR_NONE and the output parameter event will hold the event that
occurred. See section 2.4 "Event Notifications" for the structure of events.

* No event occurred within the given timeout. In this case the return value of the function will
be SA_CTL_ERROR_TIMEOUT and the event parameter is undefined.

* The call is canceled with a call of SA_CTL_Cancel from another application thread. In this
case the return value of the function will be SA_CTI_ERROR_CANCELED and the event pa-
rameter is undefined. This is typically useful when the application is to be terminated and
the event handling thread must be unblocked for a proper cleanup.

NOTICE

This function cannot be called simultaneously using multiple threads (for the

same device handle). If a second thread tries to call this function, then a
SA_CTL_FRROR_THREAD_LIMIT_ REACHED error will be returned.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
+ event (SA_CTL_Event_t *), output: Event that occurred.

* timeout (uint32_t), input: Maximum time to wait for an event to occur. The timeout is given
in milliseconds. The special value SA_CTI_INFINITE is also valid. Setting the timeout to
zero will check for already queued events, but does not block if no event is available.

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

Example:

// thread 1:
SA_CTL_Event_t event;
SA_CTL_Result_t result;
result = SA_CTL_WaitForEvent (dHandle, &event, SA_CTL_INFINITE) ;
if (result == SA_CTL_ERROR_CANCELED) {
// SA CTL WaitForEvent was canceled before an event occurred

// thread 2:
// wake up waiting thread 1
SA_CTL_Result_t result = SA_CTL_Cancel (dHandle) ;

See also:

SA_CTL_Cancel

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.34 SA CTL_Calibrate

Interface:

SA_CTL_Result_t SA_CTIL_Calibrate(
SA_CTL_DeviceHandle_t dHandle,
int8_t idx,
SA_CTL_TransmitHandle_t tHandle

) ;

Description:

This movement function performs a calibration routine for a channel. Before calling this function
the calibration options should be configured. See section 2.7.1 "Calibrating" for more information.

NOTICE

The function call returns immediately, without waiting for the movement to com-
plete. The calibration may however take a few seconds to complete. Therefore
the SA_CTL_CH_STATE_BIT_CALIBRATING in the Channel State can be mon-
itored to determine the end of the calibration sequence.

CAUTION
As a safety precaution, make sure that the positioner has enough freedom to
move without damaging other equipment.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
* idx (int8_t), input: Index of the addressed channel.

* tHandle (SA_CTL_TransmitHandle_t), input: Handle of the addressed transmit buffer. If un-
used set to zero.

Example:

SA_CTL_Result_t result;
// Set calibration mode for channel 0 (start direction: forward)
result = SA_CTL_SetProperty_132(
dHandle, 0, SA_CTL_PKEY_CALIBRATION_OPTIONS, O
)

MCS2 Programmer’s Guide el

3 FUNCTION REFERENCE

if (result == SA_CTL_ERROR_NONE) {
// calibration mode is now set
}
// Start calibration sequence
result = SA_CTL_Calibrate (dHandle, 0, 0);
if (result == SA_CTL_ERROR_NONE) {
// calibration is now started (function call returns immediately)

MCS2 Programmer’s Guide 138 _

3 FUNCTION REFERENCE

3.2.35 SA _CTL_Reference

Interface:

SA_CTL_Result_t SA_CTL_Reference (
SA_CTL_DeviceHandle_t dHandle,
int8_t idx,
SA_CTL_TransmitHandle_t tHandle

) ;

Description:

This movement function may be used to move the positioner to a known physical position. Before
calling this function the reference options as well as the Move Velocity and Move Acceleration
should be configured. See section 2.7.2 "Referencing" for more information.

NOTICE

The function call returns immediately, without waiting for the movement to com-
plete. The SA_CTL_CH_STATE_BIT_ REFERENCING in the Channel State can
be monitored to determine the end of the referencing sequence. If the com-
mand was successful the SA_CTL_CH_STATE_BIT_IS_REFERENCED in the
Channel State will be set. This bit can also be checked to determine whether
it is necessary to perform the referencing sequence.

CAUTION

As a safety precaution, make sure that the positioner has enough freedom to
move without damaging other equipment.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
* idx (int8_t), input: Index of the addressed channel.

* tHandle (SA_CTL_TransmitHandle_t), input: Handle of the addressed transmit buffer. If un-
used set to zero.

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

Example:

SA_CTL_Result_t result;
// Set find reference mode for channel 0 (default is 0)
result = SA_CTL_SetProperty_132(
dHandle, 0, SA_CTL_PKEY_REFERENCING_OPTIONS, O
)i
if (result == SA_CTL_ERROR_NONE) {
// desired reference mode 1is now set
}
// Start referencing sequence
result = SA_CTL_Reference (dHandle, 0, 0);
if (result == SA_CTL_ERROR_NONE) {
// referencing sequence has started (function call returns immediately)

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.36 SA_CTL_Move

Interface:

SA_CTL_Result_t SA_CTL_Move (
SA_CTL_DeviceHandle_t dHandle,
int8_t idx,
int64_t moveValue,
SA_CTL_TransmitHandle_ t tHandle

)

Description:

This function instructs a positioner to move according to the current move configuration. The
move mode as well as corresponding parameters (e.g. Frequency, Velocity, HoldTime, etc.) have to
be configured beforehand using the SA_CTL_SetProperty_x functions. See section 2.7 "Mov-
ing Positioners" for more information.

NOTICE

The function call returns immediately, without waiting for the movement to com-

plete. The Channel State bits SA_CTL_CH_STATE_BIT_ACTIVELY_ MOVING
and SA_CTIL_CH STATE BIT CLOSED LOOP_ACTIVE can be monitored to
determine the end of the movement.

Parameters:

dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.

idx (int8_t), input: Index of the addressed channel.

« moveValue (int64_t), input: Interpretation depends on the configured move mode.

tHandle (SA_CTL_TransmitHandle_t), input: Handle of the addressed transmit buffer. If un-
used set to zero.

Example:

// Note: to keep the example simple, we omit processing the result codes
// Set move mode
SA_CTL_SetProperty_1i32(
dHandle, 0, SA_CTL_PKEY_MOVE_MODE, SA_CTL_MOVE_MODE_CIL_RELATIVE
)i
// Set move velocity [in pm/s]
SA_CTL_SetProperty_164 (

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

dHandle, 0, SA_CTL_PKEY MOVE_VELOCITY, 500000000
)
// Set move acceleration [in pm/s2],
// a value of 0 disables the acceleration control
SA_CTL_SetProperty_1i64 (
dHandle, 0, SA_CTL_PKEY MOVE_ACCELERATION, O
)i
// Start actual movement, moveValue holds relative position (in pm)
SA_CTL_Move (dhandle, 0, 500000000, 0);

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.37 SA_CTL_Stop

Interface:

SA_CTL_Result_t SA_CTL_Stop(
SA_CTL_DeviceHandle_t dHandle,
int8_t idx,
SA_CTL_TransmitHandle_t tHandle

) ;

Description:

This function stops any ongoing movement of a positioner. The exact behavior depends on the
specific channel's type. See section 2.7.5 "Stopping Movements" for more information.

Note for closed-loop movements with acceleration control enabled: The first st op command sent
while moving triggers the positioner to come to a halt by decelerating to zero. A second stop
command triggers a hard stop (emergency stop).

NOTICE

The function call returns immediately, without waiting for the stop to complete.

The SA_ CTL_CH_STATE_BIT ACTIVELY MOVING inthe Channel State can be
monitored to determine the end of the movement.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
* idx (int8_t), input: Index of the addressed channel.

* tHandle (SA_CTL_TransmitHandle_t), input: Handle of the addressed transmit buffer. If un-
used set to zero.

Example:

int8_t channel = 0;
SA_CTL_Result_t result;
result = SA_CTL_Stop(dHandle, channel, 0);
if (result == SA_CTL_ERROR_NONE) {
// stop command is now being executed

}

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

3.2.38 SA_CTL_OpenStream

Interface:

SA_CTL_Result_t SA_CTL_OpenStream
SA_CTL_DeviceHandle_t dHandle,
SA_CTL_StreamHandle_t <+sHandle,
uint32_t triggerMode

) ;

Description:

This function opens a stream to the device. It is used for trajectory streaming (see section 2.18).
The caller must supply a pointer to a buffer where the stream handle should be written to. A
trigger mode can be set to select between different modes to start and synchronize the streaming
process.

NOTICE

For most of the supported trigger modes, the desired stream base rate has to

be configured before calling this function (see section Trigger Modes).

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
* sHandle (SA_CTL_StreamHandle_t *), output: Pointer to a stream handle.

* triggerMode (uint32_t), input: Desired trigger mode. May be one of
SA_CTL_STREAM_TRIGGER_MODE_DIRECT (0),
SA_CTL_STREAM_TRIGGER_MODE_EXTERNAL_ONCE (1),
SA_CTL_STREAM_TRIGGER_MODE_EXTERNAL_SYNC (2),
SA_CTL_STREAM_TRIGGER_MODE_EXTERNAL (3).

Example:

SA_CTL_Result_t result;
SA_CTL_StreamHandle_t sHandle;
result = SA_CTL_OpenStream (
dHandle,
&sHandle,
SA_CTL_STREAM TRIGGER_MODE_DIRECT
)i
if (result == SA_CTL_ERROR_NONE) {
// stream is now opened

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

See also:

SA_CTL_StreamFrame, SA_CTL_CloseStream, SA_CTL_AbortStream

MCS2 Programmer’s Guide N

3 FUNCTION REFERENCE

3.2.39 SA CTL_StreamFrame

Interface:

SA_CTL_Result_t SA_CTL_StreamFrame (
SA_CTL_DeviceHandle_t dHandle,
SA_CTL_StreamHandle_t sHandle,
uint8_t «frameData,
uint32_t frameSize

)7

Description:

This function supplies the device with stream data by sending one frame per function call. A frame
contains the data for one interpolation point which must be assembled by concatenating elements
of the following tuple:

* Channel Index (1 byte): The channel that receives the following position.

* Position (8 byte): A position that belongs to the current interpolation point.

See section 2.18 "Trajectory Streaming" for more information.

NOTICE

This function may block if the flow control needs to throttle the data rate. The

function returns as soon as the frame was transmitted to the controller.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
* sHandle (SA_CTL_StreamHandle_t), input: Handle of the addressed stream.
* frameData (uint8_t *), input: Pointer to the frame data buffer.

* frameSize (uint32_t), input: Size of the given frame (in bytes).
Example:

SA_CTL_Result_t result;

// create frame data array for 2 channel/position tuples
uint8_t frameData[2* (1+8)];

// fill frame with data

/S

// send frame

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

result = SA_CTL_StreamFrame (

dHandle, sHandle, frameData, sizeof (frameData)
)
if (result == SA_CTL_ERROR_NONE) {

// frame successfully sent to the device

See also:

SA_CTL_OpenStream, SA_CTL_CloseStream, SA_CTL_AbortStream

MCS2 Programmer’s Guide 147 _

3 FUNCTION REFERENCE

3.2.40 SA CTL_CloseStream

Interface:

SA_CTL_Result_t SA _CTL_CloseStream
SA_CTL_DeviceHandle_t dHandle,
SA_CTL_StreamHandle_t sHandle

)i

Description:

This function closes a stream. For the device this marks the end of the stream. After having
processed the remaining buffered interpolation points the stream is finished. See section 2.18
"Trajectory Streaming" for more information.

NOTICE

If the stream is not closed properly, the device will generate a buffer underflow

error after the last frame has been processed.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
* sHandle (SA_CTL_StreamHandle_t), input: Handle of the addressed stream.

Example:

SA_CTIL_StreamHandle_t sHandle;
SA_CTL_Result_t result;
result = SA_CTL_OpenStream
dHandle,
&sHandle,
SA_CTL_STREAM TRIGGER_MODE_DIRECT
)
if (result != SA_CTL_ERROR_NONE) {
// handle error
}
// stream frames
VIR
result = SA_CTL_CloseStream(dHandle, sHandle);
// remaining interpolation points are now processed

MCS2 Programmer’s Guide m _

3 FUNCTION REFERENCE

See also:

SA_CTL_OpenStream, SA_CTL_StreamFrame, SA_CTL_AbortStream

MCS2 Programmer’s Guide 4 N

3 FUNCTION REFERENCE

3.2.41 SA _CTL_AbortStream

Interface:

SA_CTL_Result_t SA _CTL_AbortStream
SA_CTL_DeviceHandle_t dHandle,
SA_CTL_StreamHandle_t sHandle

)i

Description:

This function aborts a stream. Thus all movements are stopped immediately and remaining
buffered interpolation points are discarded.

Parameters:

* dHandle (SA_CTL_DeviceHandle_t), input: Handle of the addressed device.
* sHandle (SA_CTL_StreamHandle_t), input: Handle of the addressed stream.

Example:

SA_CTL_StreamHandle_t sHandle;

SA_CTL_Result_t result;

result = SA_CTL_OpenStream
dHandle,
&sHandle,
SA_CTL_STREAM_TRIGGER_MODE_DIRECT

)

if (result != SA_CTL_ERROR_NONE) {
// handle error

}

// stream frames

VAR

result = SA_CTL_AbortStream(dHandle, sHandle);

// stream is aborted immediately

See also:

SA_CTL_OpenStream, SA_CTL_StreamFrame, SA_CTL_CloseStream

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.1 Property Introduction

The property reference describes all available configuration values of the device. See section 2.2
"Properties" for general information about how to access properties.

The head section of each property lists:
* the property key in the form of a C-Definition as defined in the SmarActControlConstants.h
+ the Code of the property key in the form of a hexadecimal code
+ the ASCIl-Command of the property (only available for devices with ethernet interface)

+ and the following attributes:

Cavriue | values | T eaning

Type 132,164 or String The data type of the property. Depending on the data type
the corresponding function variant must be used to access
the property.

Index Device, Module, The index parameter which must be passed to the property
Channel, API function. "Device" or "API": the index parameter is unused
and must be set to zero. "Module" or "Channel": the index

parameter addresses a specific module or channel.

Access R,RW,W,R(W) The access-mode of the property. "R": the property is read-
able, "W": the property is writable, "(W)": the property is
writable but the write protection must be removed before
being able to write to this property.

Volatility V,NV,NV-P,- The volatility of the property. "V": the property is volatile, it is
set to its default value on power-up of the device. "NV": the
property is stored to nonvolatile memory and need not be
configured on every power-up of the device. "NV-P": same
as "NV" but additionally the property is not reset to its de-
fault when performing a firmware update.

Cmd-Group X,- Indicates if the property may be added to a command group
("X") or not ("-"). See section 2.17 "Command Groups" for
more information.

Properties may be applicable only for certain interface or driver types. The type code of a channel
or module can be read using the corresponding Module Type and Channel Type properties. See
section 2.5 "Module Overview" for more information.

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.2 Property Summary

Number of Channels
Number of Bus Modules
Interface Type

Device State
Device Serial Number

Device Name
Emergency Stop Mode

Network Discover Mode
Network DHCP Timeout

Power Supply Enabled

Number of Bus Module
Channels

Module Type
Module State

Amplifier Enabled
Amplifier Mode
Positioner Control Options

Actuator Mode
Control Loop Input

Sensor Input Select
Positioner Type
Positioner Type Name

Move Mode
Channel Type
Channel State
Position
Target Position

Table 4.1 - Property Summary

T T E T T R

Device Properties

0x020F0017
0x020F0016
0x020F0066

0x020F000F
0x020F005E

0x020F003D
0x020F0088

0x020F0159
0x020F015C

Module Properties

0x02030010
0x02030017

0x02030066
0x0203000F

Positioner Properties

0x0302000D
0x030200BF
0x0302005D

0x03020019
0x03020018

0x03020018
0x0302003C
0x0302003D

0x03050087
0x02020066
0x0305000F
0x0305001D
0x0305001E

132
132
132

132
String
String
132

132
132

132
132

132
132

132
132
132

132
132

132
132
String

132
132
132
164
164

Dev
Dev
Dev

Dev
Dev

Dev
Dev

Dev
Dev

Mod
Mod

Mod
Mod

Ch
Ch
Ch

Ch
Ch

Ch
Ch
Ch

Ch
Ch
Ch
Ch
Ch

R = = 157
R = = 158
R = = 159
R - = 160
R - - 161
RW NV-P = 162
RW \Y = 163
RW NV-P - 164
RW NV-P = 166

RW \Y X 168

R - X 169
R = = 170
R - X 171
RW \'% X 174
RW NV X 176
RW NV X 178
RW Vv - 180
RW NV X 182
RW NV X 182
RW NV X 186
R = = 188
RW Vv X 189
R = = 191
R = X 192
RW \Y X 193
R = X 195

Continued on next page

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Table 4.1 - Continued from previous page

I T T T e K A

Scan Position 0x0305001F 196
Scan Velocity 0x03050022 |64 Ch RW \Y X 197
Hold Time 0x03050028 132 Ch RW Vv X 198
Move Velocity 0x03050029 64 Ch RW \Y X 200
Move Acceleration 0x0305002B |64 Ch RW \ X 202
Max Closed Loop Frequency 0x0305002F 132 Ch RW \ X 204
Default Max Closed Loop 0x03050057 132 Ch RW NV X 205
Frequency

Step Frequency 0x0305002E 132 Ch RW X 206
Step Amplitude 0x03050030 132 Ch RW X 207
Following Error 0x03020055 164 Ch R - X 208
Following Error Limit 0x03050055 164 Ch RW NV X 209
Broadcast Stop Options 0x0305005D 132 Ch RW NV X 210
Sensor Power Mode 0x03080019 32 Ch RW NV X 211
Sensor Power Save Delay 0x03080054 132 Ch RW NV X 213
Position Mean Shift 0x03090022 132 Ch RW NV X 215
Safe Direction 0x03090027 132 Ch RW NV X 216
Control Loop Input Sensor 0x0302001D 164 Ch R - X 218
Value

Control Loop Input Aux Value 0x030200B2 164 Ch R - X 219
Target To Zero Voltage Hold 0x030200B9 132 Ch RW NV 220
Threshold

Scale Properties
Logical Scale Offset 0x02040024 164 Ch RW NV X 222
Logical Scale Inversion 0x02040025 132 Ch RW NV X 223
Range Limit Min 0x02040020 164 Ch RW X 225
Range Limit Max 0x02040021 164 Ch RW Vv X 226
Default Range Limit Min 0x020400C0 164 Ch RW NV X 227
Default Range Limit Max 0x020400C1 164 Ch RW NV X 228
Calibration Properties

Calibration Options 0x0306005D 132 Ch RW \Y X 229
Signal Correction Options 0x0306001C 132 Ch RW NV X 231

Continued on next page

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Table 4.1 - Continued from previous page

T T E T T R

Referencing Properties
Referencing Options 0x0307005D 132 Ch RW \ 233
Distance To Reference Mark 0x030700A2 |64 Ch R - 235
Distance Code Inverted 0x0307000E 132 Ch RW NV X 236
Positioner Tuning and Customizing Properties
Positioner Movement Type 0x0309003F 132 Ch R(W) (NV) X 237
Positioner Is Custom Type 0x03090041 132 Ch R - X 239
Positioner Base Unit 0x03090042 132 Ch R(W) (NV) X 240
Positioner Base Resolution 0x03090043 132 Ch R(W) (NV) X 242
Positioner Sensor Head Type 0x0309008E 132 Ch R(W) (NV) X 244
Positioner Reference Type 0x03090048 132 Ch R(W) (NV) X 245
Positioner P Gain 0x0309004B 132 Ch R(W) (NV) X 247
Positioner | Gain 0x0309004C 132 Ch R(W) (NV) X 248
Positioner D Gain 0x0309004D 132 Ch R(W) (NV) X 249
Positioner PID Shift 0x0309004E 132 Ch R(W) (NV) X 250
Positioner Anti Windup 0x0309004F 132 Ch R(W) (NV) X 252
Positioner ESD Distance 0x03090050 132 Ch R(W) (NV) X 254
Threshold
Positioner ESD Counter 0x03090051 132 Ch R(W) (NV) X 256
Threshold
Positioner Target Reached 0x03090052 132 Ch R(W) (NV) X 257
Threshold
Positioner Target Hold 0x03090053 132 Ch R(W) (NV) X 258
Threshold
Save Positioner Type 0x0309000A 132 Ch W 260
Positioner Write Protection 0x0309000D 132 Ch RW 261
Streaming Properties
Stream Base Rate 0x040F002C 132 Dev RW \Y - 262
Stream External Sync Rate 0x040F002D 132 Dev RW Vv - 263
Stream Options 0x040F005D 132 Dev RW \'% = 265
Stream Load Maximum 0x040F0301 132 Dev R - - 266
Diagnostic Properties
Channel Error 0x0502007Aa 132 Ch R - X 267

Continued on next page

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Table 4.1 - Continued from previous page

I T T
132

Channel Temperature
Bus Module Temperature

Positioner Fault Reason

Aux Positioner Type

Aux Positioner Type Name
Aux Input Select

Aux I/0 Module Input Index

Aux Direction Inversion

Aux I/0 Module Input0 /
Input1 Value

Aux I/0 Module InputQ /
Input1 Value

Aux Digital Input Value

Aux Digital Output Value / Set /
Clear

Aux Digital Output Value / Set /
Clear

Aux Digital Output Value / Set /
Clear

Aux Analog Output ValueO /
Value1

Aux Analog Output ValueO /
Value1

I/0 Module Options
I/0 Module Voltage

I/0 Module Analog Input
Range

Device Input Trigger Mode

Device Input Trigger Condition

Channel Output Trigger Mode

0x05020034

005030034 132 Mod R -
005020113 132 Ch R -

Auxiliary Properties
0x0802003C 132 Ch RW NV
0x0802003D String Ch R =
0x08020018 132 Ch RW NV
0x081100AA 132 Ch RW NV
0x0809000E 132 Ch RW NV
0x08110000 64 Ch R -
0x08110001 164 Ch R =
0x080300AD 132 Mod R =
0x080300AE 132 Mod RW \Y
0x080300B0O 132 Mod w \Y
0x080300B1 32 Mod w \
0x08030000 132 Mod RW Vv
0x08030001 132 Mod RW \Y
I/0 Module Properties
0x0603005D 132 Mod RW
0x06030031 132 Mod RW
0x060300A0 32 Mod RW
Input Trigger Properties
0x060D0087 132 Dev RW
0x060D005A 132 Dev RW
Output Trigger Properties
0x060E0087 132 Ch RW V

X 269
X 270
X 271
X 274
- 276
X 277
X 278
X 280
X 282
X 282

284

285
X 285
X 285
X 287
X 287

289

291

292
= 294
- 296
X 297

Continued on next page

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Table 4.1 - Continued from previous page

I N T Y e K

Channel Output Trigger 0x060E005B

Polarity

Channel Output Trigger Pulse 0x060E005C 132 Ch RW \Y X 300
Width

Channel Position Compare 0x060E0058 164 Ch RW \% X 301
Start Threshold

Channel Position Compare 0x060E0059 |64 Ch RW Vv X 302
Increment

Channel Position Compare 0x060E0026 132 Ch RW \ X 303
Direction

Channel Position Compare 0x060E0020 164 Ch RW \Y% X 305
Limit Min

Channel Position Compare 0x060E0021 164 Ch RW \% X 307
Limit Max

Hand Control Module Properties

Hand Control Module Lock 0x020Cc0083 132 Dev RW V - 309
Options
Hand Control Module Default 0x020C0084 132 Dev RW NV - 311
Lock Options

API Properties
Event Notification Options 0xF010005D 132 API RW - - 312
Auto Reconnect 0xF01000A1 32 API RwW - - 314

"Volatility: This column defines if a property is stored in non-volatile memory. Non-Volatile properties need not be
configured on every power-up.

2Command Group: This column defines if a property may be used in command groups. See section 2.17 "Command
Groups" for more information.

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.3 Device Properties

4.3.1 Number of Channels

C-Definition SA_CTIL_PKEY_NUMBER_OF_CHANNELS
Code 0x020F0017
ASCII-Command [:PROPerty] :DEVice:NOCHannels

Type Index Access Volatility Cmd-Group
Attributes :

132 Device R - -
USB Interface SA_CTL_INTERFACE_USB (0x0001)
Ethernet Interface SA_CTL_INTERFACE_ETHERNET (0x0002)

Description

This property holds the total number of channels the connected device has. It defines the valid
range for channel index parameters. The channel index is zero based. Therefore, the maximum
index is number of channels - 1.

Note that the number of channels does not represent the number of positioners that are currently
connected to the device.

Example

SA_CTL_Result_t result;
int32_t channels;
result = SA_CTL_GetProperty_132(
dHandle, 0, SA_CTL_PKEY_ NUMBER_OF_CHANNELS, &channels, 0
)
if (result == SA_CTL_ERROR_NONE) {
// ’channels’ holds the number of available channels of the device

See Also

4.3.2 Number of Bus Modules, 4.4.2 Number of Bus Module Channels

MCS2 Programmer’s Guide 2

4 PROPERTY REFERENCE

4.3.2 Number of Bus Modules

C-Definition SA_CTL_PKEY_ NUMBER_OF_BUS_MODULES

Code 0x020F0016

ASCII-Command [:PROPerty] :DEVice:NOBModules

Type Index Access Volatility Cmd-Group
Attributes
132 Device R - -

USB Interface SA_CTL_INTERFACE_USB (0x0001)

Ethernet Interface SA_CTL_INTERFACE_ETHERNET (0x0002)
Description

This property holds the number of modules the connected device has. It defines the valid range
for module index parameters. The module index is zero based. Therefore, the maximum index is
number of modules - 1.

Example

SA_CTL_Result_t result;
int32_t modules;
result = SA_CTL_GetProperty_132(
dHandle, 0, SA_CTL_PKEY_NUMBER_OF_BUS_MODULES, &modules, O
)i
if (result == SA_CTL_ERROR_NONE) {
// ’‘modules’ holds the number of available modules of the device

See Also

4.4.2 Number of Bus Module Channels

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.3.3 Interface Type

C-Definition SA_CTL_PKEY INTERFACE_TYPE
Code 0x020F0066
ASCllI-Command [:PROPerty] :DEVice#:ITYPe

Type Index Access Volatility Cmd-Group
Attributes

132 Device R - -
USB Interface SA_CTL_INTERFACE_USB (0x0001)
Ethernet Interface SA_CTL_INTERFACE_ETHERNET (0x0002)

Description

This property holds the type of the interface. The following types are defined:

USB Interface SA_CTL_INTERFACE_USB 0x0001
Ethernet Interface SA_CTL_INTERFACE_ETHERNET 0x0002

See section 2.5 "Module Overview" for more information.
Example

SA_CTL_Result_t result;
int32_t type;
result = SA_CTL_GetProperty_132(
dHandle, 0, SA_CTL_PKEY_ INTERFACE_TYPE, &type, O
)i
if (result == SA_CTL_ERROR_NONE) {
// ’‘type’ holds the type of the interface
}

See Also

4.5.11 Channel Type, 4.4.3 Module Type

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.3.4 Device State

C-Definition SA_CTL_PKEY_DEVICE_STATE
Code 0x020F000F
ASCll-Command [:PROPerty] :DEVice:STATe
Type Index Access Volatility Cmd-Group
Attributes
132 Device R - -
USB Interface SA_CTL_INTERFACE_USB (0x0001)
Ethernet Interface SA_CTL_INTERFACE_ETHERNET (0x0002)
Description

This property holds the device state. The value is a bit field containing independent flags. Their
meanings are described in section 2.10.1 "Device State Flags".

Undefined flags are reserved for future use. Therefore, the user software should not rely on a
static value of undefined flags.

Example

SA_CTL_Result_t result;
int32_t state;
result = SA_CTL_GetProperty_132(
dHandle, 0, SA_CTL_PKEY DEVICE_STATE, &state, 0
)i
if (result == SA_CTL_ERROR_NONE) ({
// use bit masking to extract the needed information from the state
if (state & SA_CTL_DEV_STATE_BIT_HM PRESENT) {
// a hand controller is connected to the device

See Also

4.4.4 Module State, 4.5.12 Channel State

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.3.5 Device Serial Number

C-Definition SA_CTL_PKEY_DEVICE_SERIAL_NUMBER
Code 0x020F005E
ASCII-Command [:PROPerty] :DEVice: SNUMber

Type Index Access Volatility Cmd-Group
Attributes

String Device R - -
USB Interface SA_CTL_INTERFACE_USB (0x0001)
Ethernet Interface SA_CTL_INTERFACE_ETHERNET (0x0002)

Description

This property may be used to identify a device connected to the PC. Each device has a unique
serial number which makes it possible to distinguish one from another. The device serial number
consists of the global device name (‘MCS2’) and an individual number.

Example

SA_CTL_Result_t result;
char deviceSn[SA_CTL_STRING_MAX_ LENGTH];
size_t ioStrSize = sizeof (deviceSn);
result = SA_CTL_GetProperty_s(
dHandle, 0, SA_CTL_PKEY_DEVICE_SERIAIL_NUMBER,deviceSn, &ioStrSize
)
if (result == SA_CTL_ERROR_NONE) {
// ’deviceSn’ holds the serial number string, e.g. ’MCS2-00000001’

See Also

4.3.6 Device Name

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.3.6 Device Name

C-Definition SA_CTL_PKEY_DEVICE_NAME
Code 0x020F003D
ASCll-Command [:PROPerty] :DEVice :NAME

Type Index Access Volatility Cmd-Group
Attributes

String Device RW NV-P -
USB Interface SA_CTL_INTERFACE_USB (0x0001)
Ethernet Interface SA_CTL_INTERFACE_ETHERNET (0x0002)

Description

This property may be used to identify a device connected to the PC. In contrast to the device serial
number, the device name is writable by the user. The name is stored to non-volatile memory. By
default, the device name is set to the device serial number string. Note that the device name is not
reset to its default when performing a firmware update.

Example

SA_CTL_Result_t result;
char deviceName [SA_CTL_STRING_MAX_LENGTH];
size_t ioStringSize = sizeof (deviceName) ;
result = SA_CTL_GetProperty_s(
dHandle, 0, SA_CTL_PKEY_ DEVICE_NAME, deviceName, &ioStringSize
)
if (result == SA_CTL_ERROR_NONE) {
// ’deviceName’ holds the user defined name of the device

See Also

4.3.5 Device Serial Number

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.3.7 Emergency Stop Mode

C-Definition SA_CTL_PKEY_EMERGENCY_STOP_MODE
Code 0x020F0088
ASCllI-Command [:PROPerty] :DEVice:ESTop:MODE
Type Index Access Volatility Cmd-Group
Attributes
132 Device RW \ -
USB Interface SA_CTL_INTERFACE_USB (0x0001)
Ethernet Interface SA_CTL_INTERFACE_ETHERNET (0x0002)
Description

This property specifies the emergency stop mode of the device. See section 2.20.2 "Emergency
Stop Mode" for more information.

The default value is SA_CTIL_EMERGENCY_STOP_MODE_NORMAL (0).

Valid Range

SA_CTL_EMERGENCY_STOP_MODE_NORMAL (0),
SA_CTL_EMERGENCY_STOP_MODE_RESTRICTED (1),
SA_CTL_EMERGENCY_STOP_MODE_AUTO_RELEASE (2)

Example

// set emergency stop mode to normal mode
result = SA_CTL_SetProperty_132(
dHandle,
0,
SA_CTL_PKEY_EMERGENCY_STOP_MODE,
SA_CTL_EMERGENCY_STOP_MODE_NORMAL

See Also

4.14.1 Device Input Trigger Mode

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.3.8 Network Discover Mode

C-Definition SA_CTL_PKEY_NETWORK_DISCOVER_MODE
Code 0x020F0159
ASCllI-Command [:PROPerty] :DEVice:NETWork:DISCover :MODE
. Type Index Access Volatility Cmd-Group
Attributes :
132 Device RW NV-P -
Applicable for
Ethernet Interface SA_CTL_INTERFACE_ETHERNET (0x0002)
Description

This property specifies the discover mode for devices with ethernet interface. The discover feature
allows to use the SA_CTL_FindDevices function to list devices with ethernet interface without
knowing the actual IP address. The MCS2 devices use broadcast packets to inform about their
presence in the network and for the discovery mechanism. This technique is quite common for
network devices like switches, routers, etc. However, some users might wish to limit the traffic in
a restricted network. Therefore, the behavior of the discovery mechanism is configurable.

The following modes are available:

] N -ICi

0 SA_CTL_NETWORK_DISCOVER_MODE_DISABLED The discover feature is disabled. No
broadcast packets will be generated.
Devices will not be found by the
SA_CTL_FindDevices function.

1 SA_CTL_NETWORK_DISCOVER_MODE_PASSIVE The device will not generate packets
to inform about its presence but still
reacts to direct discover requests.

2 SA_CTL_NETWORK_DISCOVER_MODE_ACTIVE The device informs about its pres-
ence and reacts to all discover re-
quests.

See section 2.1 "Connecting and Disconnecting" for more information.

This property is stored to non-volatile memory and need not be configured on every power-up.
Note that the discover mode is not reset to its default when performing a firmware update. The
default value is SA_CTL_NETWORK_DISCOVER_MODE_ACTIVE (2).

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Example

// disable the network discover feature
result = SA_CTL_SetProperty_132(
dHandle,
O 14
SA_CTL_PKEY_ NETWORK_DISCOVER_MODE,
SA_CTL_NETWORK_DISCOVER_MODE_DISABLED

See Also

3.2.4 SA_CTL_FindDevices

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.3.9 Network DHCP Timeout

C-Definition SA_CTL_PKEY_NETWORK_DHCP_TIMEOUT
Code 0x020F015C
ASCllI-Command [:PROPerty] :DEVice:NETWork :DHCP: TIMeout
. Type Index Access Volatility Cmd-Group
Attributes :
132 Device RW NV-P -
Applicable for
Ethernet Interface SA_CTL_INTERFACE_ETHERNET (0x0002)
Description

This property specifies the timeout in s for the DHCP client of the ethernet interface.

If the DHCP mode is enabled the controller will try to get an IP address automatically from a
DHCP server. If no server is available the interface will fall-back to the static IP settings after the
configured timeout has expired. If the maximum value of 3600 is configured the DHCP client will
never time out.

This setting has no meaning if the interface is configured with a static IP (DHCP mode disabled).
See section 2.1 "Connecting and Disconnecting" for more information.

This property is stored to non-volatile memory and need not be configured on every power-up.
Note that the DHCP timeout is not reset to its default when performing a firmware update. The
default value is 4 s.

Valid Range

4...3600s
Example

// set the dhcp timeout to 1 min
result = SA_CTL_SetProperty_132(
dHandle,
0 ’
SA_CTL_PKEY_ NETWORK_DHCP_TIMEOUT,
60

)i

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

See Also

3.2.4 SA_CTL_FindDevices

MCS2 Programmer’s Guide iz

4 PROPERTY REFERENCE

4.4 Module Properties

4.4.1 Power Supply Enabled

C-Definition SA_CTL_PKEY_POWER_SUPPLY_ENABLED
Code 0x02030010
ASCllI-Command [:PROPerty] :MODule#:PSUPply [:ENABled]
Type Index Access Volatility Cmd-Group
Attributes
132 Module RW Vv X
Applicable for
Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)
Description

This property enables or disables the positioner driver power supply of the module. Of course the
power supply must be enabled to perform positioner movements. Otherwise, if a movement is
commanded, the SA_CTL_EVENT_MOVEMENT_FINISHED event thatis generated by the channel
will hold a SA_CTL_ERROR_POWER_SUPPLY_DISABLED error as parameter.

The default value is SA_ CTIL. ENABLED (0x01).

Valid Range

SA_CTL_DISABLED (0x00), SA_CTL_ENABLED (0x01)
Example

// switch off the driver power supply of the first module
result = SA_CTL_SetProperty_132(
dHandle, 0, SA_CTL_PKEY_POWER_SUPPLY_ ENABLED, SA_CTL_DISABLED

)i

See Also

4.5.2 Amplifier Enabled

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.4.2 Number of Bus Module Channels

C-Definition SA_CTL_PKEY_ NUMBER_OF_BUS_MODULE_CHANNELS

Code 0x02030017

ASCllI-Command [:PROPerty] :MODule#:NOMChannels

Type Index Access Volatility Cmd-Group
Attributes
132 Module R - X

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)
Description

This property holds the number of channels the addressed module has.
Example

SA_CTL_Result_t result;
int32_t modChannels;
result = SA_CTL_GetProperty_132(
dHandle, 0, SA_CTL_PKEY_NUMBER_OF_BUS_MODULE_CHANNELS, &émodChannels, 0
)i
if (result == SA_CTL_ERROR_NONE) {
// ’‘modChannels’ holds the number of channel of the module 0

See Also

4.3.2 Number of Bus Modules, 4.3.1 Number of Channels

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.4.3 Module Type

C-Definition SA_CTIL_PKEY MODULE_TYPE

Code 0x02030066

ASCllI-Command [:PROPerty] :MODule#:TYPE

Type Index Access Volatility Cmd-Group
Attributes
132 Module R - -

Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_ DRIVER (0x0002)
Description

This property holds the type of the module. The following types are defined:

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER 0x0001

Magnetic Driver SA_CTL_MAGNETIC_DRIVER 0x0002

Note that the Channel Type and Module Type properties share the same list of types.

See section 2.5 "Module Overview" for more information.
Example

SA_CTL_Result_t result;
int32_t type;
result = SA_CTL_GetProperty_132(
dHandle, 0, SA_CTL_PKEY MODULE_TYPE, &type, O
)
if (result == SA_CTL_ERROR_NONE) {
// ’‘type’ holds the type of the first driver module of the device
}

See Also

4.3.3 Interface Type, 4.5.11 Channel Type

MCS2 Programmer’s Guide N

4 PROPERTY REFERENCE

4.4.4 Module State

C-Definition SA_CTL_PKEY_MODULE_STATE

Code 0x0203000F

ASCll-Command [:PROPerty] :MODule#:STATe

Type Index Access Volatility Cmd-Group
Attributes
132 Module R - X

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)
Description

This property holds the module state. The value is a bit field containing independent flags. Their
meanings are described in section 2.10.2 "Module State Flags".

Undefined flags are reserved for future use. Therefore, the user software should not rely on a
static value of undefined flags.

Example

SA_CTL_Result_t result;
int32_t state;
result = SA_CTL_GetProperty_132(
dHandle, 0, SA_CTL_PKEY_ _MODULE_STATE, &state, O
)
if (result == SA_CTL_ERROR_NONE) {
// use bit masking to extract the needed information from the state
if (state & SA_CTL_MOD_STATE_BIT_SM PRESENT) {
// a sensor module is connected to the module

}

See Also

4.3.4 Device State, 4.5.12 Channel State

MCS2 Programmer’s Guide 171 _

4 PROPERTY REFERENCE

4.5 Positioner Properties

4.5.1 Startup Options

C-Definition SA_CTL_PKEY_STARTUP_OPTIONS
Code 0x0A02005D
ASCll-Command [:PROPerty] : CHANnel#:STARtup:0PTions
' Type Index Access Volatility Cmd-Group
Attributes
132 Channel RW NV X
Applicable for
Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)
Description

This property defines the behavior of the channel after the startup of the device. The following
flags are available:

| coemton | Code _

0 SA_CTL_STARTUP_OPT_BIT_AMPLIFIER_ENABLE 0x00000001
Undefined flags are reserved for future use. These flags should be set to zero.

Amplifier Enable (Bit 0) The amplifier is enabled automatically on startup. This also starts the
phasing sequence and forces the channel into the holding state afterwards. Note that the
Sensor Power Mode must be configured to SA_CTIL_SENSOR_MODE_ENABLED (1) for this
option to be operative.

This property is stored to non-volatile memory and need not be configured on every power-up.
The default value is 0 (all flags cleared).

Example

// enable the amplifier for channel 0 directly after startup
result = SA_CTL_SetProperty_132(
dHandle,
O 14
SA_CTL_PKEY_STARTUP_OPTIONS,
SA_CTL_STARTUP_OPT_BIT_AMPLIFIER_ENABLE

MCS2 Programmer’s Guide 172

4 PROPERTY REFERENCE

See Also

4.5.2 Amplifier Enabled, 4.5.27 Sensor Power Mode

MCS2 Programmer’s Guide 173

4 PROPERTY REFERENCE

4.5.2 Amplifier Enabled

C-Definition SA_CTL_PKEY AMPLIFIER_ENABLED
Code 0x0302000D
ASCII-Command [:PROPerty] :CHANnel#:AMPLifier[:ENABled]
Type Index Access Volatility Cmd-Group
Attributes
132 Channel RW \Y X
Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_ DRIVER (0x0002)
Description

This property enables or disables the positioner driver amplifier of the channel. Of course the
amplifier must be enabled to perform positioner movements. Otherwise, if a movement is com-
manded, the SA_CTL_EVENT_MOVEMENT_FINISHED event that is generated by the channel will
hold a SA_CTL_ERROR_AMPLIFIER_DISABLED error as parameter. Disabling the amplifier im-
plicitly disables the control-loop and the channel enters the stopped state.

The Channel State bit SA_ CTL,._ CH_STATE_BIT AMPLIFIER_ENABLED reflects the state of the
amplifier.

Stick-Slip Piezo Driver

The default value is SA_CTL_ENABLED (0x01). The channel remains stopped after the amplifier
is enabled until a closed-loop movement is commanded.

Magnetic Driver

The default value is SA_CTL_DISABLED (0x00). If the channel is not phased when enabling the
amplifier the phasing sequence is automatically started and the positioner enters the closed-loop
holding state after the phasing has finished. See section 2.22 "Phasing of Magnetic Driven Posi-
tioners" for more information.

The channel may be configured to automatically enable the amplifier at startup. (See Startup
Options property.)

MCS2 Programmer’s Guide 174 _

4 PROPERTY REFERENCE

WARNING

Magnetic driven positioners are not self-locking. Disabling the control-loop re-

moves any holding force from the positioner. Make sure not to damage any
equipment when the positioner changes its position unintentionally!

Valid Range

SA_CTL_DISABLED (0x00), SA_CTL_ENABLED (0x01)
Example

// switch off the driver power amplifier of the first channel
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY_AMPLIFIER_ENABLED, SA_CTL_DISABLED
)i

See Also

4.5.3 Amplifier Mode, 4.4.1 Power Supply Enabled, 4.5.1 Startup Options

MCS2 Programmer’s Guide N

4 PROPERTY REFERENCE

4.5.3 Amplifier Mode

C-Definition SA_CTL_PKEY AMPLIFIER_ MODE

Code 0x030200BF

ASCllI-Command [:PROPerty] :CHANnel#:AMPLifier :MODE

. Type Index Access Volatility Cmd-Group
Attributes
132 Channel RW NV X
Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)

Description

This property controls the behavior of the positioner driver amplifier.

In SA_CTL_AMP_MODE_DEFAULT mode the amplifier is automatically enabled on power-up of the
device. It remains enabled regardless of whether a positioner is connected to the channel or not.

In SA_CTL_AMP_MODE_POSITIONER_INTERLOCK mode the amplifier is automatically disabled
when the positioner is detached from the channel and enabled when a positioner is attached to
the channel. Note that the interlock is triggered by the sensor presence detection which only
works for positioners with integrated sensors.

At any time the amplifier may be enabled or disabled manually by setting the Amplifier Enabled
property.

This property is stored to non-volatile memory and need not be configured on every power-up.
The default value is SA_CTL_AMP_MODE_DEFAULT (0).

Valid Range

SA_CTL_AMP_MODE_DEFAULT (0),
SA_CTL_AMP_MODE_POSITIONER_INTERLOCK (1)

Example

// configure ’‘positioner interlock’ amplifier mode for the first channel
result = SA_CTL_SetProperty_132(
dHandle, 0, SA_CTL_PKEY_AMPLIFIER_MODE,
SA_CTL_AMP_MODE_POSITIONER_INTERLOCK
)i

MCS2 Programmer’s Guide N

4 PROPERTY REFERENCE

See Also

4.5.2 Amplifier Enabled, 4.4.1 Power Supply Enabled

MCS2 Programmer’s Guide 177 _

4 PROPERTY REFERENCE

4.5.4 Positioner Control Options

C-Definition SA_CTL_PKEY POSITIONER_CONTROIL_OPTIONS

Code 0x0302005D

ASCllI-Command [:PROPerty] : CHANnel#:PCONtrol:0PTions

Type Index Access Volatility Cmd-Group
Attributes
132 Channel RW NV X

Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_ DRIVER (0x0002)
Description

This property defines several positioner control related options. The value is a bit field containing
independent flags. The following flags are available:

G| coemton | Code _

0 SA_CTL_POS_CTRL_OPT_BIT_ACC_REL_POS_DIS 0x00000001
1 SA_CTL_POS_CTRL_OPT_BIT_NO_SLIP1 0x00000002
2 SA_CTL_POS_CTRL_OPT_BIT_NO_SLIP_WHILE_HOLDING1 0x00000004
3 SA_CTL_POS_CTRL_OPT_BIT_FORCED_SLIP_DIS1'3 0x00000008
4 SA_CTL_POS_CTRL_OPT_BIT_STOP_ON_FOLLOWING_ERR 0x00000010
5 SA_CTL_POS_CTRL_OPT_BIT_TARGE‘.T_TO_ZERO_VOLTAGE1'3 0x00000020
6 SA_CTL_POS_CTRL_OPT_BIT_CL_DIS_ON_FOLLOWING_ERR2 0x00000040
7 SA_CTL_POS_CTRL_OPT_BIT_CL_DIS_ON_EMERGENCY_STOP2 0x00000080

Undefined flags are reserved for future use. These flags should be set to zero.

This property is stored to non-volatile memory and need not be configured on every power-up.
The default value is 0 (all flags cleared).

See section 2.7.4 "Closed-Loop Movements" for a more detailed description of the positioner con-
trol options flags.

"This option is only applicable for Stick-Slip Piezo Driver.
2This option is only applicable for Magnetic Driver.
3This option has no effect for dual-piezo hybrid positioners.

MCS2 Programmer’s Guide 173 @

4 PROPERTY REFERENCE

Example

// enable the "no-slip-while-holding" feature for channel 0
result = SA_CTL_SetProperty_132(
dHandle,
O 4
SA_CTL_PKEY_ POSITIONER_ CONTROL_OPTIONS,
SA_CTL_POS_CTRL_OPT_BIT_NO_SLIP_WHILE_HOLDING
)

See Also

4.5.10 Move Mode, 4.5.5 Actuator Mode

MCS2 Programmer’s Guide iy

4 PROPERTY REFERENCE

4.5.5 Actuator Mode

C-Definition SA_CTL_PKEY_ACTUATOR_MODE

Code 0x03020019

ASCII-Command [:PROPerty] : CHANnel#:ACTuator : MODE

, Type Index Access Volatility Cmd-Group
Attributes
132 Channel RW Vv -
Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Description

This property specifies the type of driving signal generation. See section 2.7.4 "Closed-Loop Move-
ments" for a more detailed description of the actuator modes. It is not allowed to change the
actuator mode during an ongoing movement. In that case a SA_CTL_ERROR_BUSY_MOVING er-
ror is returned.

Note that the low vibration mode requires the velocity and acceleration control to be active. If the
velocity control is not already enabled (move velocity != 0), the move velocity is set implicitly to a
default velocity of 10 x 10°. If the acceleration control is not already enabled (move acceleration
I= 0), the move acceleration is set implicitly to a default acceleration of 100 x 10°.

Note that all referencing movements are performed with the normal mode even if this property is
configured to SA_CTL_ACTUATOR_MODE_LOW_VIBRATION.

The default mode is SA_ CTL_ACTUATOR_MODE_NORMAL (0).
Valid Range
SA_CTL_ACTUATOR_MODE_NORMAL (0),

SA_CTL_ACTUATOR_MODE_QUIET (1),
SA_CTL_ACTUATOR_MODE_LOW_VIBRATION (2)

NOTICE

The low vibration actuator mode needs a feature permission to be activated on

the controller. See section 2.23 "Feature Permissions" for more information.

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Example

SA_CTL_Result_t result;
int8_t channellIdx = 0;
// configure the ‘quiet ' actuator mode for channel 0
result = SA_CTL_SetProperty_132(
dHandle,
channelIdx,
SA_CTL_PKEY_ ACTUATOR_MODE,
SA_CTL_ACTUATOR_MODE_QUIET
)

See Also

4.5.18 Move Velocity, 4.5.19 Move Acceleration, 4.5.10 Move Mode, 4.5.4 Positioner Control Op-
tions

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.5.6 Control Loop Input

C-Definition SA_CTL_PKEY_CONTROL_LOOP_INPUT

Code 0x03020018

ASCIl-Command [:PROPerty] : CHANnel#:CLINput [:SELect]

Type Index Access Volatility Cmd-Group
Attributes
132 Channel RW NV X

Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_ DRIVER (0x0002)
Description

This property specifies which signal is used as input for the control-loop. For the majority of appli-
cations this property will be set to SA_CTL_CONTROL_LOOP_INPUT_SENSOR, meaning the inte-
grated sensor of the positioner is used as feedback signal for the control-loop.

Nonetheless it is also possible to use external signals. E.g. an analog voltage derived from a force
sensor can be feed into an analog input of the MCS2 I/0 module to implement a force feedback
control for a gripper. Set this property to SA_CTL_CONTROL_LOOP_INPUT_AUX_IN to use one
of the auxiliary inputs as control-loop feedback. Please refer to section 2.19.5 "Using Analog Inputs
as Control-Loop Feedback" for more information on the auxiliary configuration.

In some cases it may be useful to prohibit the closed-loop operation of a channel. This can be
achieved by setting this property to SA_CTL_CONTROL_LOOP_INPUT_DISABLED.

A SA_CTL_ERROR_CONTROL_LOOP_INPUT_DISABLED error will be generated when trying to
command a closed-loop movement in this case.

This property is stored to non-volatile memory and need not be configured on every power-up.
The default inputis SA_CTL_CONTROL_LOOP_INPUT_SENSOR (1).

Note that setting this property implicitly stops the channel and disables the control-loop.

WARNING

Magnetic driven positioners are not self-locking. Disabling the control-loop re-

moves any holding force from the positioner. Make sure not to damage any
equipment when the positioner changes its position unintentionally!

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Valid Range

SA_CTL_CONTROL_LOOP_INPUT_DISABLED (0),
SA_CTL_CONTROL_LOOP_INPUT_SENSOR (1),
SA_CTL_CONTROL_LOOP_INPUT_AUX_IN(2)

Example

SA_CTL_Result_t result;
int8_t channellIdx = 0;
// configure the sensor as input for the control-loop for channel 0
result = SA_CTL_SetProperty_132(
dHandle,
channelIdx,
SA_CTL_PKEY_ CONTROL_LOOP_INPUT,
SA_CTL_CONTROL_LOOP_INPUT_SENSOR
)

See Also

4.5.7 Sensor Input Select

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.5.7 Sensor Input Select

C-Definition SA_CTL_PKEY_SENSOR_INPUT_SELECT

Code 0x0302009D

ASCIl-Command [:PROPerty] : CHANnel#:CLINput :SENSor:SELect

Type Index Access Volatility Cmd-Group
Attributes
132 Channel RW NV X

Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_ DRIVER (0x0002)
Description

This property specifies which sensor signal is used for the ‘sensor’ input of the control-loop input
mux. (See Control Loop Input property.) The property is only relevant if a SmarAct PicoScale laser
interferometer is connected as sensor module. The PicoScale calculation system can perform var-
ious calculations with different values of the device, in particular even from different channels.
The calculation system may then be used to generate a control-loop input signal for the MCS2
channel. Set this property to SA_CTL_SENSOR_INPUT_SELECT_CALC_SYS to configure the cal-
culation system. Please refer to section 2.12 "PicoScale Sensor Module" and figure 2.11 "Auxiliary
Input Configuration (per channel)" for more information.

This property is stored to non-volatile memory and need not be configured on every power-up.
The default input is SA_CTL_SENSOR_INPUT_SELECT_POSITION (0).

Valid Range

SA_CTL_SENSOR_INPUT_SELECT_POSITION (0),
SA_CTL_SENSOR_INPUT_SELECT_CALC_SYS (1)

Example

SA_CTL_Result_t result;
int8_t channelldx = 0;
// configure the PSC calculation system as input
// for the control-loop for channel 0
result = SA_CTL_SetProperty_132(
dHandle,
channelIdx,
SA_CTL_PKEY_SENSOR_INPUT_SELECT,
SA_CTL_SENSOR_INPUT_SELECT_CALC_SYS

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

See Also

4.5.6 Control Loop Input

MCS2 Programmer’s Guide 185 _

4 PROPERTY REFERENCE

4.5.8 Positioner Type

C-Definition SA_CTL_PKEY POSITIONER_TYPE
Code 0x0302003C
ASCllI-Command [:PROPerty] :CHANnel#:PTYPe[:CODE]
Type Index Access Volatility Cmd-Group
Attributes
132 Channel RW NV X
Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_ DRIVER (0x0002)
Description

The positioner type tells the channel what type of positioner is connected. The type implicitly gives
the controller information about how to calculate positions, handle the referencing and configure
the control-loop.

The positioner type configuration differs depending on whether the positioner and driver supports
the SmarAct Positioner ID System. See section 2.5 "Module Overview" for more information about
the supported features of the different driver modules.

If the positioner type of a channel is changed, the positioner is stopped implicitly. (For Magnetic
Driver channels the amplifier is disabled.) Furthermore the calibration (and phasing) becomes
invalid and the physical position becomes unknown. The Channel State bits:

* SA_CTL_CH_STATE_BIT_IS_CALIBRATED,
* SA_CTI_CH_STATE_BIT_IS_REFERENCED and
. SA_CTL_CH_STATE_BIT_IS_PHASED*

are reset to zero to indicate this.

The positioner type is read as SA_CTL_POSITIONER_TYPE_MODIFIED (0) if tuning parameters
of a channel are modified and as long as the modified positioner type was not saved to a custom
slot. See section 2.6 "Positioner Types" for more information.

Note that SA_CTL_Calibrate must be called to ensure proper operation of the positioner if the
positioner type was changed.

Manual Positioner Type Configuration

The positioner type must be configured with this property to match the connected positioner.
Each channel stores the type setting to non-volatile memory. Consequently, there is no need to
set this property on every initialization.

*This channel state bit is only valid for Magnetic Driver.

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Valid Range

Please refer to the MCS2 Positioner Types document for a list of valid positioner type codes.

Automatic Positioner Type Configuration

In case the positioner type is automatically detected and configured when the positioner is at-
tached to the channel, the write access to this property is restricted to custom positioner types
and to the special automatic positioner type value. Writing a different positioner type returns a
SA_CTL_ERROR_POSITIONER_TYPE_NOT_WRITEABLE error.

Valid Range

SA_CTL_POSITIONER_TYPE_AUTOMATIC (299),
SA_CTL_POSITIONER_TYPE_CUSTOMO (250),
SA_CTL_POSITIONER_TYPE_CUSTOMI (251),
SA_CTL_POSITIONER_TYPE_CUSTOM?2 (252),
SA_CTL_POSITIONER_TYPE_CUSTOM3 (253)

Example

// set the ‘custom(0' positioner type for channel 0
result = SA_CTL_SetProperty_132(
dHandle, 0, SA_CTL_PKEY POSITIONER_TYPE,
SA_CTL_POSITIONER_TYPE_CUSTOMO
)

MCS2 Programmer’s Guide i

4 PROPERTY REFERENCE

4.5.9 Positioner Type Name

C-Definition SA_CTL_PKEY POSITIONER_TYPE_NAME
Code 0x0302003D
ASCllI-Command [:PROPerty] :CHANnel#:PTYPe :NAME

Type Index Access Volatility Cmd-Group
Attributes

String Channel R - -
Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_ DRIVER (0x0002)

Description

This property holds a descriptive name of the configured positioner type. The positioner type
name is a null terminated string. Note that the name is read-only.

Example

SA_CTL_Result_t result;
char name[SA_CTL_STRING_MAX_LENGTH];
size_t ioStringSize = sizeof (name);
result = SA_CTL_GetProperty_s(
dHandle, 0, SA_CTL_PKEY_ POSITIONER_TYPE_NAME, name, &ioStringSize
)i
if (result == SA_CTL_ERROR_NONE) {
// ’name’ holds the name of the configured positioner type

See Also

4.5.8 Positioner Type

MCS2 Programmer’s Guide 188 _

4 PROPERTY REFERENCE

4.5.10 Move Mode

C-Definition SA_CTL_PKEY_MOVE_MODE
Code 0x03050087
ASCllI-Command [:PROPerty] : CHANnel# :MMODe
Type Index Access Volatility Cmd-Group
Attributes
132 Channel RW Vv X
Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)
Description

This property specifies which movement mode is used when commanding a positioner movement
using SA_CTL_Move. Depending on the configured move mode the move value parameter of the
SA_CTL_Move function is interpreted differently. See section 2.7.3 "Open-Loop Movements" and
2.7.4 "Closed-Loop Movements" for a description of all related properties for the different move
modes.

The default mode is SA_CTIL_MOVE_MODE_CL_ABSOLUTE (0).

Valid Range

SA_CTL_MOVE_MODE_CL_ABSOLUTE (0),
SA_CTL_MOVE_MODE_CL_RELATIVE (1),
SA_CTL_MOVE_MODE_SCAN_ABSOLUTE (2),
SA_CTL_MOVE_MODE_SCAN_RELATIVE (3)%,
SA_CTL_MOVE_MODE_STEP (4)

Example

SA_CTL_Result_t result;
int8_t channelldx = 0;
// configure an open—-loop step movement with full amplitude at 2kHz
result = SA_CTL_SetProperty_132(
dHandle, channelIdx, SA_CTL_PKEY_MOVE_MODE, SA_CTL_MOVE_MODE_STEP
)i
if (result) {// handle error, abort}
result = SA_CTL_SetProperty_132(
dHandle, channelIdx, SA_CTL_PKEY_ _STEP_AMPLITUDE, 65535

*This mode is only applicable for Stick-Slip Piezo Driver.

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

)
if (result) {// handle error, abort}
result = SA_CTL_SetProperty_132(

dHandle, channelIdx, SA_CTL_PKEY_STEP_FREQUENCY, 2000
)i
if (result == SA_CTL_ERROR_NONE) {

// perform 100 steps

result = SA_CTL_Move (

dHandle, channellIdx, 100

)i

See Also

4.5.22 Step Frequency, 4.5.23 Step Amplitude

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.5.11 Channel Type

C-Definition SA_CTL_PKEY CHANNEL_TYPE

Code 0x02020066

ASCllI-Command [:PROPerty] : CHANnel#: TYPE

Type Index Access Volatility Cmd-Group
Attributes
132 Channel R - -

Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_ DRIVER (0x0002)
Description

This property holds the type of the channel. The following types are defined:

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER 0x0001

Magnetic Driver SA_CTL_MAGNETIC_DRIVER 0x0002

Note that the Channel Type and Module Type properties share the same list of types.

See section 2.5 "Module Overview" for more information.
Example

SA_CTL_Result_t result;
int32_t type;
result = SA_CTL_GetProperty_132(

dHandle, 0, SA_CTL_PKEY CHANNEL_TYPE, &type, O
)
if (result == SA_CTL_ERROR_NONE) {

// ’‘type’ holds the type of the first channel
}

See Also

4.3.3 Interface Type, 4.4.3 Module Type

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.5.12 Channel State

C-Definition SA_CTL_PKEY_CHANNEL_STATE

Code 0x0305000F

ASCll-Command [:PROPerty] : CHANnel#:STATe

Type Index Access Volatility Cmd-Group
Attributes
132 Channel R - X

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)
Description

This property holds the channel state. The value is a bit field containing independent flags. Their
meaning is described in section 2.10.3 "Channel State Flags".

Undefined flags are reserved for future use. Therefore, the user software should not rely on a
static value of undefined flags.

Example

SA_CTL_Result_t result;
int8_t channelldx = 0;
int32_t state;
result = SA_CTL_GetProperty_132(
dHandle, channellIdx, SA_CTL_PKEY_ CHANNEL_STATE, &state, O
)
if (result == SA_CTL_ERROR_NONE) {
// use bit masking to determine the channels movement state
if ((state & (SA_CTL_CH_STATE_BIT_ACTIVELY_MOVING |
SA_CTL_CH_STATE_BIT_CLOSED_LOOP_ACTIVE)) == 0) {
// positioner is stopped

See Also

4.3.4 Device State, 4.4.4 Module State

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.5.13 Position

C-Definition SA_CTL_PKEY_ POSITION

Code 0x0305001D

ASCII-Command [:PROPerty] :CHANnel#:POSition[:CURRent]

Type Index Access Volatility Cmd-Group
Attributes
164 Channel RW Vv X

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)
Description

This property holds the current position of a positioner. Note that it can only be used for posi-
tioners that have a sensor attached to it. To determine if a sensor is present the Channel State bit
SA_CTL_CH_STATE_BIT_SENSOR_PRESENT may be polled.

The interpretation of the read position value depends on the configured positioner type. The unit
is pico meter (pm) for linear positioners and nano degree (n°) for rotatory positioners.

Read the Positioner Base Unit property to distinguish between linear and rotatory positioner type.

The position may be set to define the logical scale. See section 2.8.5 "Shifting the Measuring
Scale" for more information. Note that is is not allowed to set the position while a calibration
or referencing sequence is running. In that case a SA_CTL_ERROR_BUSY_CALIBRATING oOr
SA_CTL_ERROR_BUSY_REFERENCING error is returned.

Valid Range

-100 x 10"%...100 x 10'> pmor n°
Example

SA_CTL_Result_t result;
int64_t position;
result = SA_CTL_GetProperty_164 (
dHandle, 0, SA_CTL_PKEY_ POSITION, é&position, O
)i
if (result == SA_CTL_ERROR_NONE) ({
// ‘position' holds the current position of channel 0

}

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

See Also

4.9.3 Positioner Base Unit, 4.9.4 Positioner Base Resolution

MCS2 Programmer’s Guide oy

4 PROPERTY REFERENCE

4.5.14 Target Position

C-Definition SA_CTL_PKEY_TARGET_POSITION
Code 0x0305001E
ASCllI-Command [:PROPerty] : CHANnel#:POSition:TARGet
Type Index Access Volatility Cmd-Group
Attributes
164 Channel R - X
Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_ DRIVER (0x0002)
Description

This property holds the target position of a channel for the current closed-loop movement.

See Also

4.5.13 Position

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.5.15 Scan Position

C-Definition SA_CTL_PKEY_SCAN_POSITION
Code 0x0305001F
ASCllI-Command [:PROPerty] : CHANnel#:POSition:SCAN
. Type Index Access Volatility Cmd-Group
Attributes
164 Channel R - X
Applicable for
Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)
Description

This property holds the current scan position of a positioner. The scan position represents the
voltage level that is currently applied to the piezo element of a positioner.

This property is mainly of interest when using the SA_CTL_MOVE_MODE_SCAN_ABSOLUTE and
SA_CTL_MOVE_MODE_SCAN_RELATIVE Move Modes, since these modes are used to control the
scan position.

The scan position is given in 16-bit increments from 0 ... 65535, where 0 corresponds to 0V and
65535 to 100 V.

Example

SA_CTL_Result_t result;
int64_t position;
result = SA_CTL_GetProperty_164 (
dHandle, 0, SA_CTL_PKEY_SCAN_POSITION, &position, O
)
if (result == SA_CTL_ERROR_NONE) {
// 'position' holds the current scan position of channel 0

}

See Also

4.5.16 Scan Velocity, 4.5.10 Move Mode

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.5.16 Scan Velocity

C-Definition SA_CTL_PKEY_SCAN_VELOCITY
Code 0x0305002A
ASCllI-Command [:PROPerty] : CHANnel#:SCAN:VELocity
. Type Index Access Volatility Cmd-Group
Attributes
164 Channel RW Vv X
Applicable for
Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)
Description

This property specifies the scan velocity of a positioner. The scan velocity is given in 16-bit in-
crements per second. With a value of 1 a scan over the full range from 0 to 65535 takes 65535
seconds while at maximum velocity the scan is performed in one micro second.

To perform a scan movement via the SA_CTL_Move function, the Move Mode property must be
setto SA_CTL_MOVE_MODE_SCAN_ABSOLUTE or SA_CTL_MOVE_MODE_SCAN_RELATIVE first.

The default value is 65 535.

Valid Range

1...65535000000
Example

// set the scan velocity for channel 0
// (full range scan in 1 second)
result = SA_CTL_SetProperty_164(
dHandle, 0, SA_CTL_PKEY_ SCAN_VELOCITY, 65535
)

See Also

4.5.15 Scan Position, 4.5.10 Move Mode

MCS2 Programmer’s Guide i

4 PROPERTY REFERENCE

4.5.17 Hold Time

C-Definition SA_CTL_PKEY_HOLD_TIME
Code 0x03050028
ASCllI-Command [:PROPerty] : CHANnel# :HOLDt ime
Type Index Access Volatility Cmd-Group
Attributes
132 Channel RW Vv X
Applicable for
Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)
Description

This property specifies how long (in ms) the position is actively held after reaching the target posi-
tion. After the hold time elapsed the channel is stopped and the control-loop is disabled.

The Channel State bit SA_CTIL_CH STATE BIT CLOSED_ LOOP_ACTIVE will be read as one as
long as the the position is actively held.

The holdtime is interpreted as unsigned integer. A value of 0 deactivates this feature, a value of
SA_CTL_INFINITE (Oxffffffff) sets the channel to infinite holding. (until manually stopped
with SA_CTL_Stop).

Note that the end stop detection is still active in holding state. If a positioner is moved away from
the target position by external forces and the channel is not able to hold the target position for a
longer time an end stop is triggered. A SA_CTL_EVENT_HOLDING_ABORTED event is generated
to notify about this and the channel is stopped.

The default hold time is SA_ CTL_ INFINITE.

Valid Range

O...Oxffffffff
Example

// set hold time for channel 0 to infinite holding
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY_HOLD_TIME, SA_CTL_INFINITE
)i

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

See Also

4.5.10 Move Mode

MCS2 Programmer’s Guide 199 _

4 PROPERTY REFERENCE

4.5.18 Move Velocity

C-Definition SA_CTL_PKEY_MOVE_VELOCITY
Code 0x03050029
ASCIl-Command [:PROPerty] : CHANnel#:VELocity
Type Index Access Volatility Cmd-Group
Attributes
164 Channel RW \Y X
Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_ DRIVER (0x0002)
Description

This property specifies the velocity of a positioner for closed-loop movement commands. The
value is given in pm s~ for linear positioners and in n°s™ for rotary positioners.

Note that the move velocity also applies to movements executed during the find reference se-
guence (see SA_CTL_Reference).

Stick-Slip Piezo Driver

If a velocity > 0 is configured, all following closed-loop movement commands will be executed with
velocity control.

Note that the channel will not drive the positioner with frequencies above the maximum allowed
frequency (see Max Closed Loop Frequency). If the maximum frequency is set too low for a certain
velocity, then the velocity might not be reached or held since the driver will cap at the maximum
driving frequency. In this case increase the maximum frequency.

The default value is 0, meaning that the velocity control is inactive. In this state the behavior of
closed-loop commands is influenced by the maximum driving frequency (see Max Closed Loop
Frequency).

It is not allowed to enable or disable the velocity control during an ongoing movement. In that case
a SA_CTL_ERROR_BUSY_MOVING error is returned. Anyway, modifying the velocity of an ongoing
movement is possible.

Valid Range (Stick-Slip Piezo Driver)

0...100 x 10°

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Magnetic Driver
The velocity and acceleration control must be used for all movements to define the move velocity
resp. the acceleration, since there is no additional limiting parameter for magnetic driven posi-

tioners (like the Max Closed Loop Frequency for piezo driven positioners). The default value is
1 x 10

Valid Range (Magnetic Driver)

1...100 x 102

Example

// enable velocity control by configuring Imm/s for channel 0
result = SA_CTL_SetProperty_164 (
dHandle, 0, SA_CTL_PKEY_MOVE_VELOCITY, 1le9

)i

See Also

4.5.19 Move Acceleration, 4.5.10 Move Mode, 4.5.20 Max Closed Loop Frequency

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.5.19 Move Acceleration

C-Definition SA_CTL_PKEY_MOVE_ACCELERATION
Code 0x0305002B
ASCII-Command [:PROPerty] :CHANnel#:ACCeleration
, Type Index Access Volatility Cmd-Group
Attributes
164 Channel RW \ X

Applicable for

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)
Description

This property specifies the acceleration of a positioner for closed-loop movement commands. The
value is given in pm s~ for linear positioner and in n° s for rotary positioners.

Note that the move acceleration also applies to movements executed during the find reference
sequence (see SA_CTL_Reference).

NOTICE

For closed-loop movements with enabled acceleration control a SA_CTL_Stop

command instructs the positioner to come to a halt by decelerating to zero ve-
locity. A second "stop" command triggers a hard stop.

Stick-Slip Piezo Driver

If an acceleration > 0 is configured, all following closed-loop movement commands will be exe-
cuted with acceleration control. The acceleration control requires the velocity control to be en-
abled too (Move Velocity > 0).

The default value is 0, meaning that the acceleration control is inactive.

It is not allowed to enable or disable the acceleration control during an ongoing movement. In that
case a SA_CTI_ERROR_BUSY_MOVING error is returned. Anyway, modifying the acceleration of
an ongoing movement is possible.

Valid Range (Stick-Slip Piezo Driver)

0...10 x 102

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Magnetic Driver
The velocity and acceleration control must be used for all movements to define the move velocity
resp. the acceleration, since there is no additional limiting parameter for magnetic driven posi-

tioners (like the Max Closed Loop Frequency for piezo driven positioners). The default value is
100 x 10°.

Valid Range (Magnetic Driver)

1...100 x 102

Example

// enable acceleration control by configuring lmm/s2 for channel 0
result = SA_CTL_SetProperty_164 (
dHandle, 0, SA_CTL_PKEY_MOVE_ACCELERATION, 1e9

)i

See Also

4.5.18 Move Velocity, 4.5.10 Move Mode

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.5.20 Max Closed Loop Frequency

C-Definition SA_CTIL_PKEY MAX CL_FREQUENCY
Code 0x0305002F
ASCIl-Command [:PROPerty] : CHANnel#:MCLFrequency [: CURRent]
. Type Index Access Volatility Cmd-Group
Attributes
132 Channel RW Vv X
Applicable for
Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)
Description

This property specifies the maximum frequency that a stick-slip piezo positioner is driven with
when issuing closed-loop movement commands.

The maximum allowed frequency depends on the actual positioner as well as the environment.
(E.g. HV and UHV environment requires lower allowed frequencies.)

This property is not held in non-volatile memory but the default value at device startup is config-
urable (see Default Max Closed Loop Frequency).

Valid Range

50...20000 Hz
Example

// set maximum closed-loop frequency to 3kHz for channel 0
result = SA_CTL_SetProperty_132(
dHandle, 0, SA_CTL_PKEY MAX_CL_FREQUENCY, 3000

)

See Also

4.5.21 Default Max Closed Loop Frequency

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.5.21 Default Max Closed Loop Frequency

C-Definition SA_CTL_PKEY DEFAULT_MAX CL_FREQUENCY
Code 0x03050057
ASCIl-Command [:PROPerty] : CHANnel#:MCLFrequency:DEFault
. Type Index Access Volatility Cmd-Group
Attributes
132 Channel RW NV X
Applicable for
Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)
Description

This property specifies the default value at device startup for the maximum closed-loop frequency.
The default frequency is 5000 Hz.
Valid Range

50...20000 Hz
Example

// set default maximum closed-loop frequency
// at start up to 6kHz for channel 0
result = SA_CTIL_SetProperty_132(
dHandle, 0, SA_CTL_PKEY_DEFAULT_MAX CL_FREQUENCY, 6000

)i

See Also

4.5.20 Max Closed Loop Frequency

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.5.22 Step Frequency

C-Definition SA_CTL_PKEY STEP_FREQUENCY
Code 0x0305002E
ASCIl-Command [:PROPerty] : CHANnel#:STEP :FREQuency
. Type Index Access Volatility Cmd-Group
Attributes
132 Channel RW Vv X
Applicable for
Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)
Description

This property specifies the frequency in Hz that open-loop steps are performed with. To perform
open-loop steps by using the SA_CTL_Move function, the Move Mode property must be set to
SA_CTL_MOVE_MODE_STEP first. See section 2.7.3 "Open-Loop Movements" for more informa-
tion.

The default frequency is 1000 Hz.

Valid Range

1...20000Hz
Example

// set the step frequency to 1kHz for channel 0
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY_STEP_FREQUENCY, 1000
)

See Also

4.5.23 Step Amplitude, 4.5.10 Move Mode

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.5.23 Step Amplitude

C-Definition SA_CTL_PKEY_ STEP_AMPLITUDE
Code 0x03050030
ASCllI-Command [:PROPerty] :CHANnel#:STEP:AMPLitude
. Type Index Access Volatility Cmd-Group
Attributes
132 Channel RW Vv X
Applicable for
Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)
Description

This property specifies the amplitude that open-loop steps are performed with. The Move Mode
property must be set to SA_CTL_MOVE_MODE_STEP first, before open-loop steps may be per-
formed with the SA_CTIL_Move function. See section 2.7.3 "Open-Loop Movements" for more
information.

Lower amplitude values result in a smaller step width. The step amplitude is a 16bit value from 1
...65535, where 65535 corresponds to 100 V.

The default amplitude is 65535 (100 V).

Valid Range

1...65535
Example

// set the step amplitude to maximum (100V) for channel 0
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY_ STEP_AMPLITUDE, 65535
)i

See Also

4.5.22 Step Frequency, 4.5.10 Move Mode

MCS2 Programmer’s Guide 207

4 PROPERTY REFERENCE

4.5.24 Following Error

C-Definition SA_CTL_PKEY FOLLOWING_ERROR

Code 0x03020055

ASCllI-Command [:PROPerty] : CHANnel#:FERRor

Type Index Access Volatility Cmd-Group
Attributes
164 Channel R - X

Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_ DRIVER (0x0002)
Description

This property holds the current following error in pm for linear positioners and in n° for rotary po-
sitioners while performing a closed-loop movement. Note that the following error is only available
for movements with velocity control enabled (Move Velocity > 0) and while performing Trajectory
Streaming.

Example

SA_CTL_Result_t result;
int64_t error;
result = SA_CTL_GetProperty_164 (
dHandle, 0, SA_CTL_PKEY_FOLLOWING_ERROR, &error, O
)i
if (result == SA_CTL_ERROR_NONE) {
// ‘error' holds the current following error of channel 0

}

See Also

4.5.25 Following Error Limit, 4.5.18 Move Velocity

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.5.25 Following Error Limit

C-Definition SA_CTL_PKEY FOLLOWING_ERROR_LIMIT
Code 0x03050055
ASCllI-Command [:PROPerty] :CHANnel#:FELimit
Type Index Access Volatility Cmd-Group
Attributes
164 Channel RW NV X
Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_ DRIVER (0x0002)
Description

This property specifies the limit for the following error detection. The value is given in pm for linear
positioners and in n° for rotary positioners. Setting the following error limit to zero disables the
detection. See section 2.14 "Following Error Detection" for more information.

This property is stored to non-volatile memory and need not be configured on every power-up.
The default value is 0 (disabled).

Valid Range

0...100 x 10"
Example

// set following error limit to 100um for channel 0
result = SA_CTL_SetProperty_164(

dHandle, 0, SA_CTL_PKEY_FOLLOWING_ERROR_LIMIT, 100000000
)i

See Also

4.5.24 Following Error, 4.5.4 Positioner Control Options, 4.5.18 Move Velocity

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.5.26 Broadcast Stop Options

C-Definition SA_CTL_PKEY_BROADCAST_STOP_OPTIONS
Code 0x0305005D
ASCII-Command [:PROPerty] : CHANnel#:BSOPtions
Type Index Access Volatility Cmd-Group
Attributes
132 Channel RW \Y X
Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_ DRIVER (0x0002)
Description

This property specifies the behavior of a broadcast stop of a channel. It is typically useful when
multiple channels are moving simultaneously and an end stop (or range limit) on one channel
should cause a halt on all other channels. See section 2.16 "Stop Broadcasting" for more informa-
tion.

The value is a bit field containing independent flags with the following meaning:

| coemton | Code _

0 SA_CTL_STOP_OPT_BIT_END_STOP_REACHED 0x00000001
1 SA_CTL_STOP_OPT_BIT_RANGE_LIMIT_REACHED 0x00000002
2 SA_CTL_STOP_OPT_BIT_FOLLOWING_LIMIT_REACHED 0x00000004

Undefined flags are reserved for future use. These flags should be set to zero.

This property is stored to non-volatile memory and need not be configured on every power-up.
The default value is 0 (all flags cleared).

Example

// enable stop broadcasting of channel 0 for end stops and range limits
result = SA_CTL_SetProperty_132(
dHandle,
0,
SA_CTL_PKEY_BROADCAST_STOP_OPTIONS,
(SA_CTL_STOP_OPT_BIT_END_STOP_REACHED |
SA_CTL_STOP_OPT_BIT_RANGE_LIMIT_REACHED)

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.5.27 Sensor Power Mode

C-Definition SA_CTL_PKEY_SENSOR_POWER_MODE

Code 0x03080019

ASCll-Command [:PROPerty] : CHANnel#:SENSor :MODE

Type Index Access Volatility Cmd-Group
Attributes
132 Channel RW NV X

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)
Description

This property specifies the sensor power mode. It may be used to activate or deactivate the sensor
that is attached to the positioner. It effectively turns the power supply of the sensor on or off.

Please refer to section 2.11 "Sensor Power Modes" for more information on the sensor power
modes.

Note that setting this property implicitly stops the channel and disables the control-loop.

The following sensor power modes are available:

T = N Short Description

0 SA_CTL_SENSOR_MODE_DISABLED The sensor power supply is turned off
continuously.

1 SA_CTL_SENSOR_MODE_ENABLED The sensor is continuously supplied with
power.
2 SA_CTL_SENSOR_MODE_POWER_SAVE" The sensor power supply is pulsed to keep

the heat generation low.

This property is stored to non-volatile memory and need not be configured on every power-up.
The default value is SA_CTI,_SENSOR_MODE_ENABLED (1).

Magnetic Driver

Changing the sensor power mode for Magnetic Driver channels also disables the amplifier the
invalidates the phasing. See section 2.22 "Phasing of Magnetic Driven Positioners" for more infor-
mation.

*The power save mode is only available for Stick-Slip Piezo Driver.

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

WARNING

Magnetic driven positioners are not self-locking. Disabling the control-loop re-

moves any holding force from the positioner. Make sure not to damage any
equipment when the positioner changes its position unintentionally!

Example

// set power save mode for the sensor of channel 0
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY_SENSOR_POWER_MODE, SA_CTL_SENSOR_MODE_POWER_SAVE
)

See Also

4.5.28 Sensor Power Save Delay

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.5.28 Sensor Power Save Delay

C-Definition SA_CTIL_PKEY SENSOR_POWER_SAVE_DELAY
Code 0x03080054
ASCIl-Command [:PROPerty] : CHANnel#:SENSor:DELay
. Type Index Access Volatility Cmd-Group
Attributes
132 Channel RW NV X
Applicable for
Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)
Description

This property specifies the time in ms before the channel disables the sensor after a movement
has finished. It has no meaning if the Sensor Power Mode is not configured to power save mode.
In power save mode the sensor is disabled most of the time. Before a movement can be started
it must be enabled by the channel to keep track of the current position. Once the movement has
finished the sensor can be disabled again. The sensor power save delay configures an additional
delay before the sensor power is disabled. If a new movement is started while this delay is run-
ning, the sensor is still enabled and the movement can be started directly. Since it takes a few
milliseconds to enable the sensor, this setting may be used to optimize the timing of a movement
sequence.

Please refer to section 2.11 "Sensor Power Modes" for more information on the sensor power save
mode.

This property is stored to non-volatile memory and need not be configured on every power-up.
The default value is 100 ms.

Valid Range

0...5000
Example

// set power save delay for the sensor of channel 0 to 200 ms
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY_SENSOR_POWER_SAVE_DELAY, 200
)

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

See Also

4.,5.27 Sensor Power Mode

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.5.29 Position Mean Shift

C-Definition SA_CTL_PKEY POSITION_MEAN_SHIFT
Code 0x03090022
ASCll-Command [:PROPerty] :CHANnel#:POSition:MSHift
Type Index Access Volatility Cmd-Group
Attributes
132 Channel RW NV X
Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)
Description

This property specifies the filter averaging factor for the position mean filter. The averaging factor
must be set as a left-shift value by a power of two. Thus the resulting averaging factor may be
calculated by the formula: factor = 2meanshift,

This property is stored to non-volatile memory and need not be configured on every power-up.
The default value is 5 (32-fold position averaging).

Valid Range

0...7
Example

// set position mean filter to 0 (disabled) for channel 0
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY POSITION_MEAN_SHIFT, O
)

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.5.30 Safe Direction

C-Definition SA_CTL_PKEY_SAFE_DIRECTION
Code 0x03090027
ASCllI-Command [:PROPerty] :CHANnel#:SDIRection
Type Index Access Volatility Cmd-Group
Attributes
132 Channel RW NV X
Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)
Description

This property specifies the safe direction used for calibration and referencing of positioner types
that are referenced via a mechanical end stop.

Some positioners are not equipped with a physical reference mark. For these positioners a me-
chanical end stop is used as a reference point when calling SA_CTL_Reference. Which end stop
is used is configured by the safe direction as well as the current Logical Scale Inversion. This should
be the direction in which the positioner may safely move without endangering the physical setup
of your manipulator system. Since the end stop must be calibrated before it can be properly used
as a reference point, the direction settings also affect the behavior of SA_CTL_Calibrate. Po-
sitioners that are referenced via an end stop also move to the configured end stop as part of the
calibration routine. This movement will use the configured Move Velocity and Move Acceleration.

Please note that the SA_CTL_Reference and SA_CTL_Calibrate functions will ignore their
configured start directions for positioners that are referenced via a mechanical end stop and will
implicitly use the direction configured by the safe direction and Logical Scale Inversion instead.
Please refer to the MCS2 Positioner Types document for a list of available positioner types and their
reference marks.

Note that when changing the safe direction the positioner must be calibrated again for proper
operation.

This property is stored to non-volatile memory and need not be configured on every power-up.

Valid Range

SA_CTL_FORWARD_DIRECTION (0x00), SA_CTL_BACKWARD_DIRECTION (0x01)

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Example

// set safe direction to forward for channel 0
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY SAFE_DIRECTION, SA_CTL_FORWARD_DIRECTION
)i

MCS2 Programmer’s Guide 217 _

4 PROPERTY REFERENCE

4.5.31 Control Loop Input Sensor Value

C-Definition SA_CTL_PKEY_CL_INPUT_SENSOR_VALUE

Code 0x0302001D

ASCllI-Command [:PROPerty] : CHANnel#:CLINput : SENSor [:VALue]

Type Index Access Volatility Cmd-Group
Attributes
164 Channel R - X

Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_ DRIVER (0x0002)
Description

This property always returns the ‘sensor’ value regardless of the configured control-loop input.
Note that an error is returned if no sensor module or no sensor is present. Please refer to section
2.19.5 "Using Analog Inputs as Control-Loop Feedback" for more information.

Example

SA_CTL_Result_t result;
inte4d_t wval;
result = SA_CTL_GetProperty_164 (
dHandle, 0, SA_CTL_PKEY_ CIL_INPUT_SENSOR_VALUE, &val, O
)
if (result == SA_CTL_ERROR_NONE) {
// ‘val' holds the current sensor position of channel 0

See Also

4.5.32 Control Loop Input Aux Value

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.5.32 Control Loop Input Aux Value

C-Definition SA_CTL_PKEY CIL_INPUT_AUX VALUE

Code 0x030200B2

ASCIl-Command [:PROPerty] : CHANnel#:CLINput:AUXiliary[:VALue]

Type Index Access Volatility Cmd-Group
Attributes
164 Channel R - X

Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_ DRIVER (0x0002)
Description

This property always returns the ‘auxiliary input’ value regardless of the configured control-loop
input. Note that an error is returned if no sensor module or no I/0 module is available (depending
on the configured Aux Input Select property). Please refer to section 2.19.5 "Using Analog Inputs
as Control-Loop Feedback" for more information on using auxiliary inputs.

Example

SA_CTL_Result_t result;
int64_t wval;
result = SA_CTL_GetProperty_164 (
dHandle, 0, SA_CTL_PKEY_CL_INPUT_AUX_ VALUE, &val, O
)
if (result == SA_CTL_ERROR_NONE) {
// ‘val' holds the auxiliary input value of channel 0

}

See Also

4.5.31 Control Loop Input Sensor Value

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.5.33 Target To Zero Voltage Hold Threshold

C-Definition SA_CTL_PKEY_ TARGET_TO_ZERO_VOLTAGE_HOLD_TH
Code 0x030200B9
ASCllI-Command [:PROPerty] :CHANnel#:TTZVoltage: THReshold[:HOLD]
. Type Index Access Volatility Cmd-Group
Attributes
132 Channel RW NV X
Applicable for
Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)
Description

This property specifies the hold threshold in pm or n° for the target-to-zero-voltage feature. The
threshold defines the maximum allowed remaining position error (distance to the target position)
for the sequence to terminate. As a guiding value the threshold should be in the range of about
ten times the target reached threshold of the configured positioner type but could be also much
lower in the particular case. If the threshold is too low the sequence will not terminate.

If a Hold Time is specified the sequence is repeated whenever the difference between current
position and target position exceeds the configured threshold. After the hold time elapsed the
last sequence is still finished and the channel is stopped.

Note that the target-to-zero-voltage feature must be enabled by setting the
SA_CTL_POS_CTRL_OPT_BIT_TARGET_TO_ZERO_VOLTAGE flag of the Positioner Control Op-
tions property. It has no meaning if the target-to-zero-voltage feature is disabled. If this property
is set to 0 the hold threshold value is derived from the Positioner Target Reached Threshold pa-
rameter of the configured positioner type.

This property is stored to non-volatile memory and need not be configured on every power-up.
The default value is 0.

Please refer to section 2.7.4 "Closed-Loop Movements" for more information on the target-to-zero-
voltage feature.

Valid Range

0...10 x 108,

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Example

// set the target to zero voltage hold threshold to 25nm for channel 0
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY_TARGET_TO_ZERO_VOLTAGE_HOLD_TH, 25000
)

See Also

4.5.4 Positioner Control Options

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.6 Scale Properties

4.6.1 Logical Scale Offset

C-Definition SA_CTL_PKEY_LOGICAL_SCALE_OFFSET
Code 0x02040024
ASCIlI-Command [:PROPerty] :CHANnel#:LSCale:OFFset
Type Index Access Volatility Cmd-Group
Attributes
164 Channel RW NV X
Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTIL_MAGNETIC_DRIVER (0x0002)
Description

This property specifies the logical scale offset. The value is given in pm for linear positioners
and in n° for rotary positioners. It is used to define the relation between the physical and the
logical scale. The logical scale offset can be set directly with this property but is also updated by
setting the Position property. Please refer to section 2.8.5 "Shifting the Measuring Scale" for more
information on defining positions.

This property is stored to non-volatile memory and need not be configured on every power-up.
The default value is 0.

Valid Range

-100 x 10"2...100 x 10'?
Example

// set the scale shift of channel 0 to +1mm relative
// to the physical scale
result = SA_CTL_SetProperty_164 (

dHandle, 0, SA_CTL_PKEY_LOGICAL_SCALE_OFFSET, 1e9
)i

See Also

4.6.2 Logical Scale Inversion

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.6.2 Logical Scale Inversion

C-Definition SA_CTL_PKEY_LOGICAL_SCALE_INVERSION

Code 0x02040025

ASCllI-Command [:PROPerty] : CHANnel#:LSCale:INVersion

Type Index Access Volatility Cmd-Group
Attributes
132 Channel RW NV X

Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_ DRIVER (0x0002)
Description

This property specifies the logical scale inversion. It is used to define the count direction of the
logical scale relative to the physical scale. Note that the scale inversion should be defined before
the absolute position is determined with the SA_CTIL_Reference function.

Further note that only the logical scale will be inverted. The Safe Direction setting will not be
changed. Thus Positioners With Endstop Reference will move in the opposite direction when exe-
cuting SA_CTL_Calibrate or SA_CTL_Reference.

Please refer to section 2.8.5 "Shifting the Measuring Scale" for more information on defining posi-
tions.

Note that setting this property implicitly stops the channel and disables the control-loop.

This property is stored to non-volatile memory and need not be configured on every power-up.
The default value is SA_CTL_NON_INVERTED (0x00).

Magnetic Driver

Changing the scale inversion for Magnetic Driver channels also disables the amplifier the invali-
dates the phasing. See section 2.22 "Phasing of Magnetic Driven Positioners" for more informa-
tion.

WARNING

Magnetic driven positioners are not self-locking. Disabling the control-loop re-

moves any holding force from the positioner. Make sure not to damage any
equipment when the positioner changes its position unintentionally!

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Valid Range

SA_CTL_NON_INVERTED (0x00), SA_CTL_INVERTED (0x01)
Example

// enable the scale inversion for channel 0
result = SA_CTL_SetProperty_132(
dHandle, 0, SA_CTL_PKEY LOGICAL_SCALE_INVERSION, SA_CTL_INVERTED

)i

See Also

4.6.1 Logical Scale Offset

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.6.3 Range Limit Min

C-Definition SA_CTL_PKEY RANGE_LIMIT MIN
Code 0x02040020
ASCllI-Command [:PROPerty] :CHANnel#:RLIMit :MIN[:CURRent]
Type Index Access Volatility Cmd-Group
Attributes
164 Channel RW \Y X
Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_ DRIVER (0x0002)
Description

This property specifies the software range limit minimum position. Note that the Range Limit Max
must be set to a higher value than the Range Limit Min to enable the limit check. This property is
not held in non-volatile memory but the default value at device startup is configurable (see Default
Range Limit Min).

Please refer to section 2.15 "Software Range Limit" for more information on software range limits.
The default value is 0.

Valid Range

-100 x 10"2...100 x 10'?
Example

// set the min range limit to —-10mm for channel 0
result = SA_CTL_SetProperty_164(

dHandle, 0, SA_CTL_PKEY_RANGE_LIMIT_MIN, -10000000000
)

See Also

4.6.4 Range Limit Max, 4.6.5 Default Range Limit Min, 4.6.6 Default Range Limit Max

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.6.4 Range Limit Max

C-Definition SA_CTL_PKEY RANGE_ LIMIT MAX
Code 0x02040021
ASCllI-Command [:PROPerty] :CHANnel#:RLIMit :MAX[:CURRent]
Type Index Access Volatility Cmd-Group
Attributes
164 Channel RW \Y X
Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_ DRIVER (0x0002)
Description

This property specifies the software range limit maximum position. Note that the Range Limit Max
must be set to a higher value than the Range Limit Min to enable the limit check. This property is
not held in non-volatile memory but the default value at device startup is configurable (see Default
Range Limit Max).

Please refer to section 2.15 "Software Range Limit" for more information on software range limits.
The default value is 0.

Valid Range

-100 x 10"2...100 x 10'?
Example

// set the max range limit to +10mm for channel 0
result = SA_CTL_SetProperty_164(

dHandle, 0, SA_CTL_PKEY_ RANGE_LIMIT_MAX, 10000000000
)

See Also

4.6.3 Range Limit Min, 4.6.5 Default Range Limit Min, 4.6.6 Default Range Limit Max

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.6.5 Default Range Limit Min

C-Definition SA_CTL_PKEY DEFAULT_RANGE_LIMIT MIN
Code 0x020400C0
ASCll-Command [:PROPerty] : CHANnel#:RLIMit :MIN:DEFault
Type Index Access Volatility Cmd-Group
Attributes
164 Channel RW NV X
Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_ DRIVER (0x0002)
Description

This property specifies the default value at device startup for the software range limit minimum
position.

Please refer to section 2.15 "Software Range Limit" for more information on software range limits.

The default value is 0.

Valid Range

-100 x 10" ...100 x 102
Example

// set the (persistent) startup min range limit to —-10mm for channel 0
result = SA_CTL_SetProperty_164(

dHandle, 0, SA_CTL_PKEY DEFAULT_RANGE_LIMIT _MIN, -10000000000
)

See Also

4.6.6 Default Range Limit Max, 4.6.3 Range Limit Min, 4.6.4 Range Limit Max

MCS2 Programmer’s Guide e T

4 PROPERTY REFERENCE

4.6.6 Default Range Limit Max

C-Definition SA_CTL_PKEY DEFAULT_RANGE_LIMIT MAX
Code 0x020400C1
ASCll-Command [:PROPerty] : CHANnel#:RLIMit :MAX:DEFault
Type Index Access Volatility Cmd-Group
Attributes
164 Channel RW NV X
Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_ DRIVER (0x0002)
Description

This property specifies the default value at device startup for the software range limit maximum
position.

Please refer to section 2.15 "Software Range Limit" for more information on software range limits.

The default value is 0.

Valid Range

-100 x 10" ...100 x 102
Example

// set the (persistent) startup max range limit to +10mm for channel 0
result = SA_CTL_SetProperty_164(

dHandle, 0, SA_CTL_PKEY DEFAULT_RANGE_LIMIT_MAX, 10000000000
)

See Also

4.6.6 Default Range Limit Max, 4.6.3 Range Limit Min, 4.6.4 Range Limit Max

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.7 Calibration Properties

4.7.1 Calibration Options

C-Definition SA_CTL_PKEY_CALIBRATION_OPTIONS
Code 0x0306005D
ASCllI-Command [:PROPerty] :CHANnel#:CALibration:0PTions
Type Index Access Volatility Cmd-Group
Attributes
132 Channel RW \Y X
Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTIL_MAGNETIC_DRIVER (0x0002)
Description

This property specifies the calibration options. It is used to define the behavior of the calibration
routine when calling the SA_CTIL_Calibrate function.

The value is a bit field containing independent flags. The following flags are available:

| coemton | Code _

0 SA_CTL_CALIB_OPT_BIT_DIRECTION 0x00000001
1 SA_CTL_CALIB_OPT_BIT_DIST_CODE_INV_DETECT 0x00000002
2 SA_CTL_CALIB_OPT_BIT_ASC_CALIBRATION* 0x00000004
8 SA_CTL_CALIB_OPT_BIT_LIMITED_TRAVEL_RANGE* 0x00000100

Undefined flags are reserved for future use. These flags should be set to zero.
Please refer to section 2.7.1 "Calibrating" for more information on the calibration sequence.

The default value is 0 (all flags cleared).

Example

SA_CTL_Result_t result;
int8_t channelldx = 1;
// set calibration options of channel 1 (signal correction sequence)
result = SA_CTL_SetProperty_132(
dHandle, channellIdx, SA_CTL_PKEY_ CALIBRATION_OPTIONS, O
)

*This option is only applicable for Stick-Slip Piezo Driver.

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

if (result == SA_CTL_ERROR_NONE) {
// start signal correction calibration sequence
result = SA_CTL_Calibrate (dHandle, channelIdx, 0);

See Also

4.7.2 Signal Correction Options

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.7.2 Signal Correction Options

C-Definition SA_CTL_PKEY_SIGNAL_CORRECTION_OPTIONS
Code 0x0306001C
ASCllI-Command [:PROPerty] : CHANnel#:SCORrection:0PTions
Type Index Access Volatility Cmd-Group
Attributes
132 Channel RW NV X
Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_ DRIVER (0x0002)
Description

This property specifies the sensor signal correction options. The value is a bit field containing
independent flags with the following meaning:

| coemton | Code _

0 Reserved 0x00000001
1 SA_CTI_SIGNAIL_CORR_OPT_BIT_DAC 0x00000002
2 Reserved 0x00000004
3 SA_CTL_SIGNAL_CORR_OPT_BIT_DPEC 0x00000008
4 SA_CTL_SIGNAL_CORR_OPT_BIT_ASC" 0x00000010

Undefined flags are reserved for future use. These flags should be set to zero. Bit 0 and bit 2 are
reserved and always read as one.

Dynamic Amplitude / Phase Error Correction (Bit 1 and Bit 3) Enables the dynamic sensor am-
plitude / phase error correction. The calibration routine corrects amplitude and phase errors
of the sensor signals. See section 2.7.1 "Calibrating" for more information. Additionally, the
controller automatically compensates the sensor signals while moving if these flags are set
to one. Disabling the dynamic amplitude and phase error correction might be useful for
some special applications to achieve a higher position repeatability with the trade-off off a
lower absolute position accuracy.

Advanced Sensor Correction®(Bit 4) The Advanced Sensor Correction allows to compensate pe-
riodic sensor errors. The correction requires an additional calibration routine which must
be performed once for every channel. This routine generates a compensation table for the
sensor data which is applied to the position calculation if this flag is set to one. See section
2.7.1 "Advanced Sensor Correction Calibration (calibration options 0x04 or 0x05)'" for the
details on the calibration routine.

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

This property is stored to non-volatile memory and need not be configured on every power-up.
The default value is 0x0f (15) with means that the amplitude and phase error corrections are active.

NOTICE

The advanced sensor correction needs a feature permission to be activated on

the controller. See section 2.23 "Feature Permissions" for more information.

Example

// disable the dynamic amplitude and phase error correction for channel 0
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY_SIGNAL_CORRECTION_OPTIONS, O
)i

See Also

4.7.1 Calibration Options

*This option is only applicable for Stick-Slip Piezo Driver.

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.8 Referencing Properties

4.8.1 Referencing Options

C-Definition SA_CTIL_PKEY_REFERENCING_OPTIONS

Code 0x0307005D

ASCIlI-Command [:PROPerty] :CHANnel#:REFerencing:0PTions

Type Index Access Volatility Cmd-Group
Attributes
132 Channel RW \Y X

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTIL_MAGNETIC_DRIVER (0x0002)
Description

This property specifies the find reference mode. It is used to define the behavior of the find
reference routine when calling the SA_CTL_Reference function.

Note that the find reference sequence is also influenced by the Move Velocity and Move Accelera-
tion properties (see there).

The value is a bit field containing independent flags. The following flags are available:

| coemton | Code _

0 SA_CTL_REF_OPT_BIT_START_DIR 0x00000001
1 SA_CTL_REF_OPT_BIT_REVERSE_DIR 0x00000002
2 SA_CTL_REF_OPT_BIT_AUTO_ZERO 0x00000004
3 SA_CTL_REF_OPT_BIT_ABORT_ON_ENDSTOP 0x00000008
4 SA_CTL_REF_OPT_BIT_CONTINUE_ON_REF_FOUND 0x00000010
5 SA_CTL_REF_OPT_BIT_STOP_ON_REF_FOUND 0x00000020

Undefined flags are reserved for future use. These flags should be set to zero.

Please refer to section 2.8.1 "Reference Marks" for more information on the find reference se-
quence.

The default value is 0 (all flags cleared).

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Example

SA_CTL_Result_t result;
int8_t channellIdx = 2;
// set find reference mode of channel 2 (start direction: backwards)
result = SA_CTL_SetProperty_132(
dHandle,
channelIdx,
SA_CTL_PKEY_REFERENCING_OPTIONS,
SA_CTL_REF_OPT_BIT_START_DIR
)
if (result) {// handle error, abort}
// set velocity to Imm/s
result = SA_CTL_SetProperty_164 (
dHandle, channelIdx, SA_CTL_PKEY_MOVE_VELOCITY, 1le9
)
if (result) {// handle error, abort}
// disable acceleration control
result = SA_CTIL_SetProperty_164 (
dHandle, channelIdx, SA_CTL_PKEY_ MOVE_ACCELERATION, O
)
if (result == SA_CTL_ERROR_NONE) {
// start searching for the reference with the previously
// set parameters
result = SA_CTL_Reference (dHandle, channellIdx, 0);

See Also

4.5.18 Move Velocity, 4.5.19 Move Acceleration

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.8.2 Distance To Reference Mark

C-Definition SA_CTL_PKEY_DISTANCE_TO_REF_MARK
Code 0x030700A2
ASCll-Command [:PROPerty] : CHANnel#:REFerencing:DTRMark
Type Index Access Volatility Cmd-Group
Attributes
164 Channel R - X
Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)
Description

This property holds the distance between the start of a referencing movement and the reference
mark. Note that the position of the reference mark is not necessarily the position where the po-
sitioner comes to halt. The behavior depends on the Referencing Options. See section 2.7.2 "Ref-
erencing" for more information. The value is updated whenever a referencing sequence finished.
The unit is pico meter (pm) for linear positioners and nano degree (n°) for rotatory positioners.

See Also

4.8.1 Referencing Options

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.8.3 Distance Code Inverted

C-Definition SA_CTL_PKEY_DIST_CODE_INVERTED
Code 0x0307000E
ASCllI-Command [:PROPerty] :CHANnel#:REFerencing:DCINverted
Type Index Access Volatility Cmd-Group
Attributes
132 Channel RW NV X
Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)
Description

This property is used to correct the absolute position calculation when referencing positioners
with multiple reference marks. In rare cases the reference algorithm may produce faulty results
due to a reference coding mismatch. The correct setting is determined by an automatic calibra-
tion routine, thus it is usually not necessary to manually modify this property. See section 2.7.1
"Calibrating" for more information.

This property is stored to non-volatile memory and need not be configured on every power-up.

Valid Range

SA_CTL_NON_INVERTED (0x00), SA_CTL_INVERTED (0x01)

See Also

4.8.1 Referencing Options

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.9 Tuning and Customizing Properties

4.9.1 Positioner Movement Type

C-Definition SA_CTL_PKEY_POS_MOVEMENT_TYPE

Code 0x0309003F

ASCll-Command [:PROPerty] :CHANnel#:TUNing:MTYPe

Type Index Access Volatility Cmd-Group
Attributes
132 Channel R(W) (NV) X

Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)
Description

This property holds the positioner movement type. It may be used to determine the type of posi-
tioner (linear, rotatory, goniometer or tip-tilt) that is configured for the channel. This property has
informational character only.

Note that you must remove the write protection with the Positioner Write Protection property (see
there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type
configuration to a custom slot. See section 2.6.3 "Custom Positioner Types" for more information.

Valid Range

SA_CTL_POS_MOVEMENT_TYPE_LINEAR (0),
SA_CTL_POS_MOVEMENT_TYPE_ROTATORY (1),
SA_CTL_POS_MOVEMENT_TYPE_GONIOMETER (2),
SA_CTL_POS_MOVEMENT_TYPE_TIP_TILT (3)

Example

SA_CTL_Result_t result;
int32_t type;
result = SA_CTL_GetProperty_132(
dHandle, 0, SA_CTL_PKEY_POS_MOVEMENT_TYPE, &type, O
)
if (result == SA_CTL_ERROR_NONE) ({
if (type == SA_CTL_POS_MOVEMENT_TYPE_GONIOMETER) {

MCS2 Programmer’s Guide 27 00

4 PROPERTY REFERENCE

// goniometer type configured

See Also

4.9.3 Positioner Base Unit, 4.9.4 Positioner Base Resolution

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.9.2 Positioner Is Custom Type

C-Definition SA_CTL_PKEY_POS_IS_CUSTOM_TYPE
Code 0x03090041
ASCllI-Command [:PROPerty] : CHANnel#:TUNing:CUSTom
Type Index Access Volatility Cmd-Group
Attributes
132 Channel R - X
Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_ DRIVER (0x0002)
Description

This property may be used to determine if the currently configured positioner type is a custom
type. Custom positioner types are fully configurable. See section 2.6.3 "Custom Positioner Types"
for more information.

Example

SA_CTL_Result_t result;
int32_t custom;
result = SA_CTL_GetProperty_132(
dHandle, 0, SA_CTL_PKEY_ POS_IS_CUSTOM_TYPE, &custom, O
)
if (result == SA_CTL_ERROR_NONE) {
if (custom) // custom positioner type configured
else // predefined positioner type configured

See Also

4.5.8 Positioner Type

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.9.3 Positioner Base Unit

C-Definition SA_CTL_PKEY_POS_BASE_UNIT

Code 0x03090042

ASCll-Command [:PROPerty] : CHANnel#:TUNing:BASE:UNIT

Type Index Access Volatility Cmd-Group
Attributes
132 Channel R(W) (NV) X

Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)
Description

This property holds the basic unit of the position values a channel uses. (e.g. meter, degree). Note
that this property has informational character only. Setting it to a different value won't influence
the position calculation.

The hand control module reads this setting to display the appropriate unit on the screen.

Note that you must remove the write protection with the Positioner Write Protection property (see
there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type
configuration to a custom slot. See section 2.6.3 "Custom Positioner Types" for more information.

Valid Range

SA_CTL_UNIT_NONE (0x00000000),
SA_CTL_UNIT_METER (0x00000002),
SA_CTL_UNIT_DEGREE (0x00000003)

Example

SA_CTL_Result_t result;

int32_t unit;

result = SA_CTL_GetProperty_132(
dHandle, 0, SA_CTL_PKEY_POS_BASE_UNIT, &unit, O

)

if (result == SA_CTL_ERROR_NONE) {
if (unit == SA_CTL_UNIT_METER) // linear positioner type configured
else // rotatory/goniometer positioner type configured

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

See Also

4.9.4 Positioner Base Resolution

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.9.4 Positioner Base Resolution

C-Definition SA_CTL_PKEY_POS_BASE_RESOLUTION
Code 0x03090043
ASCll-Command [:PROPerty] : CHANnel#:TUNing:BASE:RESolution
Type Index Access Volatility Cmd-Group
Attributes
132 Channel R(W) (NV) X
Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)
Description

This property holds the basic resolution of the position value in powers of 10. It may be used to
programmatically determine the interpretation of the position value of a channel. The resolution
depends on the configured positioner type. (see Positioner Type) For example, a channel config-
ured as linear positioner type has a base unit of Meter and a base resolution of -12. So a position
value of 100 000 000 would correspond to 100 um. Note that this property has informational char-
acter only. Setting it to a different value won't influence the position calculation. The resolution
must be an integer multiple of 3.

The hand control module reads this setting to display the appropriate unit on the screen.

Note that you must remove the write protection with the Positioner Write Protection property (see
there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type
configuration to a custom slot. See section 2.6.3 "Custom Positioner Types" for more information.

Valid Range

-12,-9,-6,-3,0.
Example

SA_CTL_Result_t result;
int32_t resolution;
result = SA_CTL_GetProperty_132(
dHandle, 0, SA_CTL_PKEY_ POS_BASE_RESOLUTION, &resolution, O
)
if (result == SA_CTL_ERROR_NONE) {
// ’‘resolution’ holds the base resolution of channel 0

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

See Also

4.9.3 Positioner Base Unit

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.9.5 Positioner Sensor Head Type

C-Definition SA_CTL_PKEY POS_HEAD_ TYPE
Code 0x0309008E
ASCllI-Command [:PROPerty] :CHANnel#:TUNing:HTYPe
Type Index Access Volatility Cmd-Group
Attributes
132 Channel R(W) (NV) X
Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTIL_MAGNETIC_DRIVER (0x0002)
Description

This property specifies the sensor head type. This property is only relevant if a SmarAct PicoScale
interferometer is used as sensor module. The head type is set to the PicoScale when an adjust-
ment sequence is started with the MCS2 hand control module.

For more information on head types refer to the PicoScale User Manual.

Note that you must remove the write protection with the Positioner Write Protection property (see
there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type
configuration to a custom slot. See section 2.6.3 "Custom Positioner Types" for more information.

Valid Range

C01, €02, CO3, FO1

See Also

4.9.17 Positioner Write Protection, 4.9.16 Save Positioner Type

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.9.6 Positioner Reference Type

C-Definition SA_CTL_PKEY POS_REF_TYPE

Code 0x03090048

ASCllI-Command [:PROPerty] :CHANnel#:TUNing:RTYPe

Type Index Access Volatility Cmd-Group
Attributes
132 Channel R(W) (NV) X

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTIL_MAGNETIC_DRIVER (0x0002)
Description

This property specifies the reference type of the positioner. The reference type is used by the
SA_CTL_Reference function to determine the physical position. See section 2.8.1 "Reference
Marks" for more information.

Note that you must remove the write protection with the Positioner Write Protection property (see
there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type
configuration to a custom slot. See section 2.6.3 "Custom Positioner Types" for more information.

Valid Range

SA_CTL_REF_TYPE_NONE (0),
SA_CTL_REF_TYPE_END_STOP (1),
SA_CTL_REF_TYPE_SINGLE_CODED (2),
SA_CTL_REF_TYPE_DISTANCE_CODED (3)

Example

SA_CTL_Result_t result;
int32_t type;
result = SA_CTL_GetProperty_132(
dHandle, 0, SA_CTI_PKEY POS_REF_TYPE, &type, O
)
if (result == SA_CTL_ERROR_NONE) {
if (type == SA_CTL_REF_TYPE_SINGLE_CODED) {
// single coded reference type configured

}

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

See Also

4.9.17 Positioner Write Protection, 4.9.16 Save Positioner Type

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.9.7 Positioner P Gain

C-Definition SA_CTL_PKEY_POS_P_GAIN
Code 0x0309004B
ASCll-Command [:PROPerty] : CHANnel#:TUNing:GAIN:P
Type Index Access Volatility Cmd-Group
Attributes
132 Channel R(W) (NV) X
Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)
Description

This property specifies the proportional gain of the control-loop. Note that the resulting gain is
also influenced by the Positioner PID Shift property.

Note that you must remove the write protection with the Positioner Write Protection property (see
there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type
configuration to a custom slot. See section 2.6.3 "Custom Positioner Types" for more information.

Valid Range

0...2x10°
Example

// set the P gain to 100 for channel 0
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY_POS_P_GAIN, 100
)i

See Also

4.9.8 Positioner | Gain, 4.9.9 Positioner D Gain, 4.9.10 Positioner PID Shift

MCS2 Programmer’s Guide 27

4 PROPERTY REFERENCE

4.9.8 Positioner | Gain

C-Definition SA_CTL_PKEY_POS_I_GAIN
Code 0x0309004cC
ASCll-Command [:PROPerty] :CHANnel#:TUNing:GAIN: T
Type Index Access Volatility Cmd-Group
Attributes
132 Channel R(W) (NV) X
Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)
Description

This property specifies the integral gain of the control-loop. The Positioner Anti Windup must be
set to a non-zero value to activate the | gain of the control-loop. Note that the resulting gain is also
influenced by the Positioner PID Shift property.

Note that you must remove the write protection with the Positioner Write Protection property (see
there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type
configuration to a custom slot. See section 2.6.3 "Custom Positioner Types" for more information.

Valid Range

0...2 x10°
Example

// set the I gain to 0 for channel 0
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY_POS_I_GAIN, O
)

See Also

4.9.7 Positioner P Gain, 4.9.9 Positioner D Gain, 4.9.10 Positioner PID Shift, 4.9.11 Positioner Anti
Windup

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.9.9 Positioner D Gain

C-Definition SA_CTL_PKEY_POS_D_GAIN
Code 0x0309004D
ASCll-Command [:PROPerty] : CHANnel#:TUNing:GAIN:D
Type Index Access Volatility Cmd-Group
Attributes
132 Channel R(W) (NV) X
Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)
Description

This property specifies the differential gain of the control-loop. Note that the resulting gain is also
influenced by the Positioner PID Shift property.

Note that you must remove the write protection with the Positioner Write Protection property (see
there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type
configuration to a custom slot. See section 2.6.3 "Custom Positioner Types" for more information.

Valid Range

0...2x10°
Example

// set the D gain to 10 for channel 0
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY POS_P_GAIN, 10
)i

See Also

4.9.7 Positioner P Gain, 4.9.8 Positioner | Gain, 4.9.10 Positioner PID Shift

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.9.10 Positioner PID Shift

C-Definition SA_CTL_PKEY_POS_PID_SHIFT
Code 0x0309004E
ASCll-Command [:PROPerty] : CHANnel#:TUNing:GAIN:SHIFt
Type Index Access Volatility Cmd-Group
Attributes
132 Channel R(W) (NV) X
Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)
Description

This property specifies a divisor for the PID controller output. The resulting divisor is calculated
as 2PIPshift Since the divisor is applied at the output of the PID controller it influences the P, | and
D-term results.

PID gains are set as integer values. The result of the respective control term is divided by internally
right-shifting it by the configured PID shift value. This way effective gains lower than one may be
defined using only integer numbers. The effective gain is determined by the combination of the
gain value and the PID shift.

gaines = gain / 2PDshift

E.g. an effective gain of 0.25 may be achieved by the settings:
gain = 8, shift = 5 or gain = 1, shift = 2, both settings result in the same effective gain.

gaines=8/2°=1/22=0.25

Note that you must remove the write protection with the Positioner Write Protection property (see
there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type
configuration to a custom slot. See section 2.6.3 "Custom Positioner Types" for more information.

The default value is 10.

Valid Range (Stick-Slip Piezo Driver)

0...16.

Valid Range (Magnetic Driver)

0...32.

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Example

// set the PID shift to 10 (default) for channel 0
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY POS_PID_SHIFT, 10
)i

See Also

4.9.7 Positioner P Gain, 4.9.8 Positioner | Gain, 4.9.9 Positioner D Gain

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.9.11 Positioner Anti Windup

C-Definition SA_CTL_PKEY_ POS_ANTI_WINDUP
Code 0x0309004F
ASCIl-Command [:PROPerty] : CHANnel#: TUNing: AWINdup
. Type Index Access Volatility Cmd-Group
Attributes
132 Channel R(W) (NV) X
Applicable for
Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)
Description

This property specifies the anti windup limit for the integral gain of the control-loop. It has no
meaning if the Positioner | Gain property is set to zero. The value range refers to the range of the
PID-controller’s output which depends on the type of driver module.

Note that you must remove the write protection with the Positioner Write Protection property (see
there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type
configuration to a custom slot. See section 2.6.3 "Custom Positioner Types" for more information.

The default value is 0.
Stick-Slip Piezo Driver

In general the integral gain must not be used for stick-slip piezo positioners since the plant model
already has integrating behavior. The maximum output value of Stick-Slip Piezo Drivers is 2 x 108
mHz so that the maximum windup limit would also be this value.

Magnetic Driver

The windup limit is set internally so that this property has no effect for this type of driver channels.

Valid Range

0...2 x10°

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Example

// set the anti windup to default for channel 0
result = SA_CTL_SetProperty_132(
dHandle, 0, SA_CTL_PKEY_POS_ANTI_WINDUP, O

)i

See Also

4.9.7 Positioner P Gain, 4.9.8 Positioner | Gain, 4.9.9 Positioner D Gain, 4.9.10 Positioner PID Shift

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.9.12 Positioner ESD Distance Threshold

C-Definition SA_CTL_PKEY_POS_ESD_DIST_TH
Code 0x03090050
ASCllI-Command [:PROPerty] :CHANnel#:TUNing:ESDetection:DISTance
Type Index Access Volatility Cmd-Group
Attributes
132 Channel R(W) (NV) X
Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)
Description

This property specifies the end stop detection distance threshold in pm or n°. This property in
conjunction with the Positioner ESD Counter Threshold configure the end stop detection respon-
sible to detect a physical end stop as well as a mechanical blockage of a positioner for closed-loop
movements. An end stop condition leads to a stop of the channel.

Note that you must remove the write protection with the Positioner Write Protection property (see
there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type
configuration to a custom slot. See section 2.6.3 "Custom Positioner Types" for more information.

Generally, there is no need to modify the end stop detection configuration. The configured Posi-
tioner Type defines appropriate values for all kinds of SmarAct positioners. Nonetheless it may
be necessary to disable the end stop detection in some special cases. E.g. if an auxiliary input is
used as feedback for the control-loop and the actual input value represents a set-point for the
control-loop instead of a current position of the positioner.

The default value depends on the configured positioner type. The special value 0 disables the end
stop detection.

CAUTION
Configuring inappropriate values or disabling the end stop detection prevents

the channel from stopping the positioner in case of a mechanical blockage. The
end stop detection configuration properties must be used with caution!

Valid Range

0...1x10°

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Example

// set the end stop detection distance threshold to 1000000 for channel 0
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY_POS_ESD_DIST_TH, 1000000
)

See Also

4.9.13 Positioner ESD Counter Threshold

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.9.13 Positioner ESD Counter Threshold

C-Definition SA_CTL_PKEY_POS_ESD_COUNTER_TH
Code 0x03090051
ASCllI-Command [:PROPerty] :CHANnel#:TUNing:ESDetection:COUNter
Type Index Access Volatility Cmd-Group
Attributes
132 Channel R(W) (NV) X
Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)
Description

This property specifies the end stop detection counter threshold.

Note that you must remove the write protection with the Positioner Write Protection property (see
there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type
configuration to a custom slot. See section 2.6.3 "Custom Positioner Types" for more information.

Valid Range

1...2x10°.
Example

// set the end stop detection counter value to 100000 for channel 0
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY_POS_ESD_COUNTER_TH, 100000
)

See Also

4.9.12 Positioner ESD Distance Threshold

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.9.14 Positioner Target Reached Threshold

C-Definition SA_CTL_PKEY POS_TARGET REACHED_TH
Code 0x03090052
ASCllI-Command [:PROPerty] :CHANnel#:TUNing: THReshold:TREached
Type Index Access Volatility Cmd-Group
Attributes
132 Channel R(W) (NV) X
Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTIL_MAGNETIC_DRIVER (0x0002)
Description

This property specifies the target reached threshold in pm or n°. A closed-loop movement is
considered to be finished once the target position + the target reached threshold is reached.

Note that you must remove the write protection with the Positioner Write Protection property (see
there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type
configuration to a custom slot. See section 2.6.3 "Custom Positioner Types" for more information.

Valid Range

0...1x 10,
Example

// set the target reached threshold to 5nm for channel 0
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY_POS_TARGET_REACHED_TH, 5000
)

See Also

4.9.15 Positioner Target Hold Threshold

MCS2 Programmer’s Guide o

4 PROPERTY REFERENCE

4.9.15 Positioner Target Hold Threshold

C-Definition SA_CTL_PKEY POS_TARGET HOLD_TH

Code 0x03090053

ASCllI-Command [:PROPerty] : CHANnel#:TUNing: THReshold:THOLd

Type Index Access Volatility Cmd-Group
Attributes
132 Channel R(W) (NV) X

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTIL_MAGNETIC_DRIVER (0x0002)
Description

This property specifies the target hold threshold in pm or n°. The hold threshold defines a dead
zone around the control-loop input signal where the output does not change (target + target hold
threshold). This parameter is typically used in a system where the resolution of the sensor is
significantly lower than the resolution of the actuator. The dead zone then prevents oscillation
around the target or "hunting" of the control-loop.

If an auxiliary analog input is used as control-loop feedback this property defines the dead zone
for the analog input signal. Since the digital representation of the analog input value is defined
by the ADC of the I0-module (see I/0 Module Analog Input Range property) the dead zone must
be configured in counts of ADC bits in this case. Refer to section 2.19.5 "Using Analog Inputs as
Control-Loop Feedback" for more information on the configuration.

Note that you must remove the write protection with the Positioner Write Protection property (see
there) before being able to write this property.

This is a setting of the positioner type configuration. To make it persistent save the positioner type
configuration to a custom slot. See section 2.6.3 "Custom Positioner Types" for more information.

The default value is 0.

Valid Range

0...1x 10,
Example

// set the target hold threshold to 100nm for channel 0
result = SA_CTL_SetProperty_132(
dHandle, 0, SA_CTL_PKEY_POS_TARGET_HOLD_TH, 100000

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

See Also

4.9.14 Positioner Target Reached Threshold

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.9.16 Save Positioner Type

C-Definition SA_CTL_PKEY_POS_SAVE
Code 0x0309000A
ASCllI-Command [:PROPerty] : CHANnel#:TUNing:SAVE
Type Index Access Volatility Cmd-Group
Attributes
132 Channel W - X
Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_ DRIVER (0x0002)
Description

This property is used to save a modified positioner type to a custom slot of a channel. Currently
four custom slots per channel are available. Saving the positioner type makes the parameters
persistent and implicitly sets the Positioner Type to the given custom type.

Valid Range

SA_CTL_POSITIONER_TYPE_CUSTOMO (250), SA_CTL_POSITIONER_TYPE_CUSTOMI1 (251),
SA_CTL_POSITIONER_TYPE_CUSTOM?2 (252), SA_CTL_POSITIONER_TYPE_CUSTOM3 (253)

Example

// save a modified positioner type of channel 0 to custom slot 1
result = SA_CTL_SetProperty_132(
dHandle, 0, SA_CTL_PKEY_POS_SAVE, SA_CTL_POSITIONER_TYPE_CUSTOMO

)i

See Also

4.9.17 Positioner Write Protection

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.9.17 Positioner Write Protection

C-Definition SA_CTL_PKEY_POS_WRITE_PROTECTION
Code 0x0309000D
ASCII-Command [:PROPerty] :CHANnel#:TUNing:WPRotection
Type Index Access Volatility Cmd-Group
Attributes
132 Channel RW Vv X
Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)
Description

This property is used to unlock the write access to the tuning parameters. A special key must be
written to this property to unlock the write access to the tuning properties. Write any other value
to this property to enable the protection again. Otherwise the write protection remains unlocked
for the channel until the device is restarted. The write protection key is:
SA_CTL_POS_WRITE_PROTECTION_KEY (0x534D4152)

Example

// disable tuning parameter write protection of channel 0
result = SA_CTL_SetProperty_132(
dHandle,
0,
SA_CTL_PKEY_POS_WRITE_PROTECTION,
SA_CTL_POS_WRITE_PROTECTION_KEY
)
// set tuning parameters like P gain, etc.

See Also

4.9.16 Save Positioner Type

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.10 Streaming Properties

4.10.1 Stream Base Rate

C-Definition SA_CTIL_PKEY_STREAM_BASE_RATE
Code 0x040F002C
ASCllI-Command [:PROPerty] :DEVice:STReaming:BASerate
Type Index Access Volatility Cmd-Group
Attributes :
132 Device RW \Y -
USB Interface SA_CTL_INTERFACE_USB (0x0001)
Ethernet Interface SA_CTL_INTERFACE_ETHERNET (0x0002)
Description

This property specifies the stream base rate in Hz for the trajectory streaming. See section 2.18
"Trajectory Streaming" for more information.

The default stream base rate is 1000 Hz.

Valid Range

10...1000 Hz
Example

// set the stream rate to 1 kHz
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY STREAM BASE_RATE, 1000
)i

See Also

4.10.2 Stream External Sync Rate, 4.14.1 Device Input Trigger Mode

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.10.2 Stream External Sync Rate

C-Definition SA_CTL_PKEY STREAM EXT SYNC_RATE

Code 0x040F002D

ASCIl-Command [:PROPerty] :DEVice:STReaming:SYNCrate

Type Index Access Volatility Cmd-Group
Attributes
132 Device RW \ -

USB Interface SA_CTL_INTERFACE_USB (0x0001)

Ethernet Interface SA_CTL_INTERFACE_ETHERNET (0x0002)
Description

This property specifies the external stream synchronization rate in Hz for the trajectory streaming.
It may be used to synchronize the internal position streaming clock to an external clock signal.
Note that the configured Stream Base Rate must be a whole-number multiple of the external sync
rate.

The default value is 1.

Valid Range

1...1000Hz

NOTICE

In order to use the external stream synchronization the device must be equipped

with an Input Trigger connector.

Example

// configure external stream synchronization rate to 100Hz
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY_STREAM_EXT_SYNC_RATE, 100
)i

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

See Also

4.10.1 Stream Base Rate, 4.14.1 Device Input Trigger Mode

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.10.3 Stream Options

C-Definition SA_CTL_PKEY_STREAM_OPTIONS

Code 0x040F005D

ASCIl-Command [:PROPerty] :DEVice:STReaming:0PTions

Type Index Access Volatility Cmd-Group
Attributes
132 Device RW \ -

USB Interface SA_CTL_INTERFACE_USB (0x0001)

Ethernet Interface SA_CTL_INTERFACE_ETHERNET (0x0002)
Description

This property specifies the stream’s options. It is used to define the behavior of the stream before
calling the SA_CTL_OpenStream function.

The value is a bit field containing independent flags. The following flags are available:

0 SA_CTL_STREAM OPT_BIT_INTERPOLATION_DIS 0x00000001
Undefined flags are reserved for future use. These flags should be set to zero.
The default value is 0 (all flags cleared).

Please refer to section 2.18.3 "Options" for more information.
Example

// disable the target position interpolation for the trajectory streaming
result = SA_CTL_SetProperty_132(

dHandle,

O 4

SA_CTL_PKEY_ STREAM_ OPTIONS,

SA_CTL_STREAM _OPT_BIT_INTERPOLATION_DIS

See Also

4.10.1 Stream Base Rate

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.10.4 Stream Load Maximum

C-Definition SA_CTIL_PKEY_STREAM_LOAD_MAX
Code 0x040F0301
ASCII-Command [:PROPerty] :DEVice: STReaming: LOAD : MAXimum
Type Index Access Volatility Cmd-Group
Attributes
132 Device R - -
USB Interface SA_CTL_INTERFACE_USB (0x0001)
Ethernet Interface SA_CTL_INTERFACE_ETHERNET (0x0002)
Description

This property reports the maximum load generated by the current stream in percent. The property
acts like a peak detector. The highest load level generated by the currently running stream is
stored. When starting the stream the load value is reset to zero. Please refer to section 2.18
"Trajectory Streaming" for more information.

Valid Range

0...100%
Example

SA_CTL_Result_t result;
int32_t maximumLoad;
result = SA_CTL_GetProperty_132(
dHandle, 0, SA_CTL_PKEY_STREAM_LOAD_MAX, &maximumLoad, O
)
if (result == SA_CTL_ERROR_NONE) {
// 'maximumLoad’ holds the maximum load of channel 0 in percent

}

See Also

4.10.1 Stream Base Rate

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.11 Diagnostic Properties

4.11.1 Channel Error

C-Definition SA_CTIL_PKEY_CHANNEL_ERROR

Code 0x0502007A

ASCIl-Command [:PROPerty] : CHANnel#:ERRor

Type Index Access Volatility Cmd-Group
Attributes
132 Channel R - X

Stick-Slip Piezo Driver SA_CTL_STICK_ _SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)
Description

This property holds the last movement error of a channel. Generally, event notifications are used
to inform about channel errors. (See section 2.7.7 "Movement Feedback" for more information.)
However, if event notifications are not used in an application the Channel State bit
SA_CTL_CH_STATE_BIT_MOVEMENT_FAILED can be monitored to detect channel errors. This
property may be read then to determine the reason of the error.

Note that this property only holds errors caused by an asynchronous movement command (such
as SA_CTL_Move,SA_CTL_Calibrateand SA_CTIL_Reference). Anerror occurred while read-
ing or writing a property is not captured. More precisely, the property returns the result param-
eter of the last SA_CTL_EVENT_MOVEMENT_FINISHED or SA_CTL_EVENT_HOLDING_ABORTED
event.

Note that the channel error is reset to SA_CTL_ERROR_NONE after reading this property.
Example

SA_CTL_Result_t result;
int32_t chError;
result = SA_CTL_GetProperty_132(
dHandle, 0, SA_CTL_PKEY_ CHANNEL_FRROR, &chError, 0
)
if (result == SA_CTL_ERROR_NONE) {
// ’chError’ holds the last error code of channel 0

MCS2 Programmer’s Guide 2 T

4 PROPERTY REFERENCE

See Also

4.5.12 Channel State, 5.2.2 Movement Finished, 5.2.3 Holding Aborted

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.11.2 Channel Temperature

C-Definition SA_CTL_PKEY_CHANNEL_TEMPERATURE
Code 0x05020034
ASCllI-Command [:PROPerty] : CHANnel#:TEMPerature
Type Index Access Volatility Cmd-Group
Attributes
132 Channel R - X
Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_ DRIVER (0x0002)
Description

This property holds the amplifier temperature in °C. The temperature is measured near the chan-
nels driver amplifier. See section 2.9.3 "Hardware Monitoring" for more information on tempera-
ture monitoring.

Example

SA_CTL_Result_t result;
int32_t chTemp;
result = SA_CTL_GetProperty_132(
dHandle, 0, SA_CTL_PKEY_CHANNEL_TEMPERATURE, &chTemp, O
)
if (result == SA_CTL_ERROR_NONE) {
// ’chTemp’ holds the temperature of the amplifier of channel 0

See Also

4.11.3 Bus Module Temperature

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.11.3 Bus Module Temperature

C-Definition SA_CTL_PKEY_BUS_MODULE_TEMPERATURE

Code 0x05030034

ASCII-Command [:PROPerty] :MODule#:TEMPerature

Type Index Access Volatility Cmd-Group
Attributes
132 Module R - X

Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_ DRIVER (0x0002)
Description

This property holds the temperature of a bus module in °C. See section 2.9.3 "Hardware Monitor-
ing" for more information on temperature monitoring.

Example

SA_CTIL_Result_t result;
int32_t modTemp;
result = SA_CTL_GetProperty_132(
dHandle, 0, SA_CTL_PKEY_BUS_MODULE_TEMPERATURE, &modTemp, O
)
if (result == SA_CTL_ERROR_NONE) {
// '‘modTemp’ holds the temperature of the driver module 0

See Also

4.11.2 Channel Temperature

MCS2 Programmer’s Guide e

4 PROPERTY REFERENCE

4.11.4 Positioner Fault Reason

C-Definition SA_CTL_PKEY_ POSITIONER_FAULT_REASON
Code 0x05020113
ASCllI-Command [:PROPerty] : CHANnel#:PFReason
. Type Index Access Volatility Cmd-Group
Attributes
132 Channel R - X
Applicable for
Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)
Description

This property holds a bit field of positioner faults. A positioner fault is indicated by the
SA_CTL_CH_STATE_BIT_POSITIONER_FAULT bit of the Channel State property. This property
may then be read to determine the exact fault situation. The reason of a positioner fault may
be a bad wiring of the connector or a defective cable. The fault bits give a hint which wire is
affected by a short or interruption. The current deviation flag indicates that the controller detected
an unbalance of the phase currents which also may be an indicator for a positioner damage. The
driver fault flag will be set in case of a fault or damage of the driver amplifier of the controller.

In any case the positioner must be disconnected from the controller and checked for damages.

The value is a bit field containing independent flags with the following meaning;:

| coemton | Code _

0 SA_CTL_POS_FAULT_REASON_BIT_U_PHASE_SHORT 0x00000001
1 SA_CTL_POS_FAULT_ REASON_BIT_V_PHASE_SHORT 0x00000002
2 SA _CTL_POS_FAULT_REASON_BIT_W_PHASE_SHORT 0x00000004
3 SA_CTL_POS_FAULT_REASON_BIT_ U_PHASE_OPEN 0x00000008
4 SA_CTL_POS_FAULT_REASON_BIT_V_PHASE_OPEN 0x00000010
5 SA_CTL_POS_FAULT_REASON_BIT_W_PHASE OPEN 0x00000020
6 SA_CTL_POS_FAULT_ REASON_BIT_CURRENT_ DEVIATION 0x00000040
15 SA_CTL_POS_FAULT_REASON_BIT_DRIVER_FAULT 0x00008000
Example

SA_CTL_Result_t result;
int32_t fault;
result = SA_CTL_GetProperty_132(
dHandle, 0, SA_CTL_PKEY POSITIONER_FAULT_REASON, &fault, O

MCS2 Programmer’s Guide i

4 PROPERTY REFERENCE

)i
if (result == SA_CTL_ERROR_NONE) {
// ’fault’ holds the positioner fault reason of channel 0

}

See Also

4.5.2 Amplifier Enabled

MCS2 Programmer’s Guide 272 _

4 PROPERTY REFERENCE

4.11.5 Motor Load

C-Definition SA_CTL_PKEY_MOTOR_LOAD
Code 0x05020115
ASCll-Command [:PROPerty] : CHANnel#:MOTor : LOAD
Type Index Access Volatility Cmd-Group
Attributes
132 Channel R - X
Applicable for
Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)
Description

This property reports the motor load in percent. The motor load is calculated by the I2T protec-
tion algorithm from the motor current over time. See section 2.9.2 "Magnetic Driver Overload
Protection" for more information.

Note that only the amount of current which exceeds the continuous current value leads to an
increasing load level. This means, that if the positioner is operated only with its nominal load the
motor load remains at 0 %. Monitoring this property while performing movements may be useful
to estimate the motor load before the overload protection trips and disables the control-loop to
protect the positioner from over-heating.

Valid Range

0...100%
Example

SA_CTL_Result_t result;
int32_t motorLoad;
result = SA_CTL_GetProperty_132(
dHandle, 0, SA_CTL_PKEY_MOTOR_LOAD, &motorLoad, O
)
if (result == SA_CTL_ERROR_NONE) {
// ’motorLoad’ holds the load of channel 0 in percent
}

See Also

4.11.4 Positioner Fault Reason

MCS2 Programmer’s Guide vz

4 PROPERTY REFERENCE

4.12 Auxiliary Properties

4.12.1 Aux Positioner Type

C-Definition SA_CTIL_PKEY_AUX_POSITIONER_TYPE

Code 0x0802003C

ASCll-Command [:PROPerty] :CHANnel#:AUXiliary:PTYPe

Type Index Access Volatility Cmd-Group
Attributes
132 Channel RW NV X

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTIL_MAGNETIC_DRIVER (0x0002)
Description

This property is used to tell the channel which set of control-loop parameters (PID gains, etc.) is
used when an auxiliary input is configured as input for the control-loop. More precisely, if the
Control Loop Input property is set to SA_CTL_CONTROL_LOOP_INPUT_AUX_IN the auxiliary po-
sitioner type parameters are implicitly configured, otherwise the regular positioner type param-
eters are used. This way it is possible to switch between two control modes without manually
changing all individual parameters. Typically a custom positioner type slot will be used here to
define the necessary parameters.

Please refer to section 2.19.5 "Using Analog Inputs as Control-Loop Feedback" for more informa-
tion on using auxiliary inputs.

This property is stored to non-volatile memory and need not be configured on every power-up.

Valid Range

SA_CTL_POSITIONER_TYPE_CUSTOMO (250
SA_CTL_POSITIONER_TYPE_CUSTOMI1 (251
SA_CTL_POSITIONER_TYPE_CUSTOM2 (252
SA_CTL_POSITIONER_TYPE_CUSTOM3 (253

1

1

1

~— O N~ ~—

Example

// select the ‘CUSTOM0O' positioner type (type code 250) for channel 0
result = SA_CTL_SetProperty_132(
dHandle, 0, SA_CTL_PKEY_AUX POSITIONER_TYPE, 250

MCS2 Programmer’s Guide 2y

4 PROPERTY REFERENCE

See Also

4.5.8 Positioner Type

MCS2 Programmer’s Guide o

4 PROPERTY REFERENCE

4.12.2 Aux Positioner Type Name

C-Definition SA_CTL_PKEY AUX POSITIONER_TYPE NAME
Code 0x0802003D
ASCIl-Command [:PROPerty] : CHANnel#:AUXiliary:PTName

Type Index Access Volatility Cmd-Group
Attributes

String Channel R - -
Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_ DRIVER (0x0002)

Description

This property holds a descriptive name of the configured auxiliary positioner type. The positioner
type name is a null terminated string. Note that the name is read-only.

Example

SA_CTL_Result_t result;
char name[SA_CTL_STRING_MAX_LENGTH];
size_t ioStringSize = sizeof (name);
result = SA_CTL_GetProperty_s(
dHandle, 0, SA_CTL_PKEY_AUX POSITIONER_TYPE_NAME, name, &ioStringSize
)i
if (result == SA_CTL_ERROR_NONE) {
// ’name’ holds the name of the configured auxiliary positioner type

See Also

4.12.1 Aux Positioner Type, 4.5.8 Positioner Type

MCS2 Programmer’s Guide 26 @ 000

4 PROPERTY REFERENCE

4.12.3 Aux Input Select

C-Definition SA_CTL_PKEY AUX INPUT_ SELECT
Code 0x08020018
ASCllI-Command [:PROPerty] :CHANnel#:AUXiliary:ISELect
Type Index Access Volatility Cmd-Group
Attributes
132 Channel RW NV X
Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_ DRIVER (0x0002)
Description

This property selects the auxiliary input component. Note that the Aux I/0 Module Input Index
property must be configured too to select a specific analog input.

Note that the additional sensor module inputs are not available on all sensor module types. Please
refer to section 2.19 "Auxiliary Inputs and Outputs" for more information on using auxiliary inputs.

This property is stored to non-volatile memory and need not be configured on every power-up.
The default value is SA_CTL_AUX_INPUT_SELECT_IO_MODULE (0).

Valid Range

SA_CTL_AUX_INPUT_SELECT_IO_MODULE (0),
SA_CTL_AUX_INPUT_SELECT_SENSOR_MODULE (1)

Example

// set the auxiliary input selection to 'I/O module‘ for channel 0
result = SA_CTL_SetProperty_132(
dHandle, 0, SA_CTL_PKEY_AUX_INPUT_SELECT,
SA_CTL_AUX_INPUT_SELECT_TO_MODULE
)

See Also

4.12.4 Aux 1/0 Module Input Index, 4.12.5 Aux Direction Inversion, 4.5.32 Control Loop Input Aux
Value, 4.5.6 Control Loop Input

MCS2 Programmer’s Guide v

4 PROPERTY REFERENCE

4.12.4 Aux 1/0 Module Input Index

C-Definition SA_CTL_PKEY AUX IO_MODULE_INPUT_ INDEX
Code 0x081100AA
ASCllI-Command [:PROPerty] :CHANnel#:AUXiliary:IOModule:INPut :INDex
Type Index Access Volatility Cmd-Group
Attributes
132 Channel RW NV X
Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_ DRIVER (0x0002)
Description

This property specifies which input of an analog I/0 module is used as input for the auxiliary
control-loop input.

The I/0 module has a total number of six analog inputs which are mapped in groups of two to the
channels of the corresponding driver module. The input index refers to the analog inputs assigned
to a specific channel as follows:

m Channel Index | Analog Input

0 0(3) (6) AIN-1
0 1(4)(7) AIN-2
0 2(5)(8) AIN-3
1 0(3)(6) AIN-4
1 1(4)(7) AIN-5
1 2(5)(8) AIN-6

Note that input indexes refer to a module (start with zero for each module) while the channel
indexes refer to the entire device. Channel indexes in brackets refer to a second respectively third
module of the device.

Please refer to section 2.19 "Auxiliary Inputs and Outputs" for more information on using auxiliary
inputs. See the MCS2 User Manual for the pin assignment of the I/0 module connector.

This property is stored to non-volatile memory and need not be configured on every power-up.
The default input index is 0.

Valid Range

0...1

MCS2 Programmer’s Guide vy

4 PROPERTY REFERENCE

Example

// set the auxiliary I/0 module input index to 0 for channel 0
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY_AUX_TIO_MODULE_INPUT_INDEX, O
)i

See Also

4.12.3 Aux Input Select, 4.12.5 Aux Direction Inversion, 4.12.6 Aux I/0O Module Input0 / Input1 Value

MCS2 Programmer’s Guide 29

4 PROPERTY REFERENCE

4.12.5 Aux Direction Inversion

C-Definition SA_CTL_PKEY_AUX_DIRECTION_INVERSION
Code 0x0809000E
ASCll-Command [:PROPerty] :CHANnel#:AUXiliary:DINVersion
Type Index Access Volatility Cmd-Group
Attributes
132 Channel RW NV X
Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)
Description

This property specifies the feedback direction sense for the control-loop in case an auxiliary input
is used as input for the control-loop. The direction sense of the feedback must match the direction
sense of the control-loop output. Otherwise a runaway condition may occur when commanding a
closed-loop movement. The end stop detection (if not disabled) will typically abort the movement
in that case. While the direction sense is determined automatically by the calibration routine when
using the position as feedback signal, this setting must be defined manually using this property
when using an auxiliary input. This property has no meaning if the Control Loop Input is not
configured to auxiliary input.

Please refer to section 2.19.5 "Using Analog Inputs as Control-Loop Feedback" for more informa-
tion on using auxiliary inputs.

This property is stored to non-volatile memory and need not be configured on every power-up.
The defaultis SA_CTIL_NON_INVERTED (0x00).

Valid Range

SA_CTL_NON_INVERTED (0x00), SA_CTL_INVERTED (0x01)
Example

// set the auxiliary direction inversion to ‘inverted' for channel 0
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY AUX_DIRECTION_INVERSION, SA_CTL_INVERTED
)i

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

See Also

4.12.3 Aux Input Select, 4.12.6 Aux I/0 Module Input0 / Input1 Value, 4.5.6 Control Loop Input

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.12.6 Aux1/0 Module Input0 / Input1 Value

C-Definition SA_CTL_PKEY AUX IO_MODULE_INPUTO_VALUE
Code 0x08110000
ASCIl-Command [:PROPerty] :CHANnel#:AUXiliary:IOModule:INPut :VALue#
Type Index Access Volatility Cmd-Group
Attributes
164 Channel R - X
C-Definition SA_CTL_PKEY_AUX_IO_MODULE_INPUT1_VALUE
Code 0x08110001
ASCIl-Command [:PROPerty] :CHANnel#:AUXiliary:IOModule:INPut :VALue#
Type Index Access Volatility Cmd-Group
Attributes
164 Channel R - X
Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)
Description

These properties hold the input values of the analog inputs of an analog I/0 module. Note that an
error is returned if no I/0 module is available.

Note further that the interpretation of the value depends on the configured 1/0 Module Analog
Input Range of the I/0 module. Please refer to section 2.19 "Auxiliary Inputs and Outputs" for
more information on using auxiliary inputs.

Example

SA_CTL_Result_t result;
int64_t inputvVval;
result = SA_CTL_GetProperty_164 (
dHandle, 0, SA_CTL_PKEY_AUX_ IO_MODULE_INPUTO_VALUE, &inputVal, O
)
if (result == SA_CTL_ERROR_NONE) {
// ‘inputVal‘ holds the current input value of the first
// I/0 module input of channel 0

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

See Also

4.12.3 Aux Input Select, 4.5.32 Control Loop Input Aux Value, 4.5.31 Control Loop Input Sensor
Value, 4.12.6 Aux I/0 Module Input0 / Input1 Value, 4.5.6 Control Loop Input

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.12.7 Aux Digital Input Value

C-Definition SA_CTL_PKEY AUX DIGITAL_ INPUT_VALUE

Code 0x080300AD

ASCII-Command [:PROPerty] :MODule#:AUXiliary:DINPut [:VALue]

Type Index Access Volatility Cmd-Group
Attributes
132 Module R - X

Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_ DRIVER (0x0002)
Description

This property holds a bit mask that represents the input levels of the general purpose digital inputs
of an I/0 module.

Please refer to section 2.19 "Auxiliary Inputs and Outputs" for more information.
Example

SA_CTL_Result_t result;

// read the digital inputs

int32_t input;

result = SA_CTL_GetProperty_i32 (dHandle, O,
SA_CTL_PKEY_AUX_DIGITAL_INPUT_VALUE, &input, O

)

if (result == SA_CTL_ERROR_NONE) {
// ‘input ' holds the value of the digital inputs

}

See Also

4.12.8 Aux Digital Output Value / Set / Clear

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.12.8 Aux Digital Output Value / Set / Clear

C-Definition SA_CTL_PKEY AUX DIGITAL OUTPUT_VALUE
Code 0x080300AE
ASCIl-Command [:PROPerty] :MODule#:AUXiliary:DOUTput [: VALue]
. Type Index Access Volatility Cmd-Group
Attributes
132 Module RW Vv X
C-Definition SA_CTL_PKEY_AUX_DIGITAL_OUTPUT_SET
Code 0x080300BO
ASCll-Command [:PROPerty] :MODule#:AUXiliary:DOUTput :SET
. Type Index Access Volatility Cmd-Group
Attributes
132 Module w Vv X
C-Definition SA_CTL_PKEY_AUX_DIGITAL_OUTPUT_CLEAR
Code 0x080300B1
ASCllI-Command [:PROPerty] :MODule#:AUXiliary:DOUTput :CLEar
' Type Index Access Volatility Cmd-Group
Attributes
132 Module w Vv X
Applicable for
Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)
Description

These properties hold bit masks that may be used to modify the general purpose digital outputs
of an I/0 module. Note that the digital output driver circuit is disabled by default and must be
enabled by setting the SA_CTL_TIO_MODULE_OPT_BIT_DIGITAL_OUTPUT_ENABLED bit of the
I/0 Module Options property.

Please refer to section 2.19 "Auxiliary Inputs and Outputs" for more information.

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Example

SA_CTL_Result_t result;

// set all digital output of the I/O module to a specific value

// DOUT-4 | DOUT-3 | DOUT-2 | DOUT-1 |

// L(0) | H(I) | L(0) [H(I) /

result = SA_CTL_SetProperty_i32 (dHandle, O,
SA_CTL_PKEY_AUX_DIGITAL_OUTPUT_VALUE, 0x00000005

)

See Also

4.12.7 Aux Digital Input Value, 4.13.1 1/0 Module Options

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.12.9 Aux Analog Output Value0 / Value1

C-Definition SA_CTL_PKEY_AUX_ANALOG_OUTPUT_VALUEO
Code 0x08030000
ASCIl-Command [:PROPerty] :MODule#:AUXiliary:AOUTput : VALue#
Type Index Access Volatility Cmd-Group
Attributes
132 Module RW \Y X
C-Definition SA_CTL_PKEY_AUX_ANALOG_OUTPUT_VALUE1
Code 0x08030001
ASCIlI-Command [:PROPerty] :MODule#:AUXiliary:AOUTput : VALue#
Type Index Access Volatility Cmd-Group
Attributes
132 Module RW \Y X
Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)
Description

These properties specify the output values of the analog outputs of an I/0 module. Note that the
analog output driver circuit is in a high-impedance state by default and must be enabled by setting
the SA_CTL_TIO_MODULE_OPT_BIT_ANALOG_OUTPUT_ENABLED bit of the I/O Module Options

property.

The output values are given as signed 16-bit values from -32768 to 32767, where -32768 corre-
sponds to -10V and 32767 to 10V output voltage.

The default value is 0 which corresponds to an output voltage of OV.

Valid Range

-32768...32767

Example

SA_CTL_Result_t result;
// set the output value of analog output(O (AOUT-1) to zero
// which corresponds to 0V

MCS2 Programmer’s Guide 2

4 PROPERTY REFERENCE

result = SA_CTL_SetProperty_i32 (dHandle, O,
SA_CTL_PKEY_AUX_ ANALOG_OUTPUT_VALUEO, O
)

See Also

4.12.6 Aux I/0 Module Input0 / Input1 Value, 4.13.1 1/0 Module Options

MCS2 Programmer’s Guide 288 _

4 PROPERTY REFERENCE

4.13 1/0 Module Properties

4.13.1 1/0 Module Options

C-Definition SA_CTL_PKEY_IO_MODULE_OPTIONS
Code 0x0603005D
ASCIlI-Command [:PROPerty] :MODule#:I0OModule:OPTions
Type Index Access Volatility Cmd-Group
Attributes
132 Module RW \Y X
Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTIL_MAGNETIC_DRIVER (0x0002)
Description

This property specifies the 1/0 module options. The value is a bit field containing independent
flags with the following meaning:

0 SA_CTL_IO_MODULE_OPT_ BIT DIGITAL_OUTPUT_ENABLED Enables or disables the
digital output driver cir-
cuit on the I/0 module.

1 SA_CTL_IO_MODULE_OPT_BIT_EVENTS_ENABLED Enables or disables the
event notification for the
digital inputs of an 1/0
module.

2 SA CTL_IO MODULE_OPT BIT ANALOG OUTPUT ENABLED Enables or disables the
analog output driver cir-
cuit on the I70 module.

3..31 Reserved These bits are reserved
for future use.

All options are disabled by default, which means that all digital and analog outputs are in a high-
impedance state and the digital input events are disabled.

NOTICE

Note that the events enabled bit refers to the general purpose digital inputs of the

I/0 module and not to the digital device trigger input. See section 2.20 "Input
Trigger" for the event notification configuration of the device input trigger.

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Note that the I/0 Module Voltage property should be set first to define the voltage level of the
digital outputs.

Example

// enable the digital and analog output driver circuit of the I/0 module
result = SA_CTIL_SetProperty_132(
dHandle, 0, SA_CTL_PKEY_ IO_MODULE_OPTIONS,
(SA_CTL_IO_MODULE_OPT_BIT_DIGITAL_OUTPUT_ENABLED |
SA_CTL_TIO_MODULE_OPT_BIT_ANALOG_OUTPUT_ENABLED)

See Also

4.13.2 1/0 Module Voltage

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.13.2 1/0 Module Voltage

C-Definition SA_CTL_PKEY_IO_MODULE_VOLTAGE
Code 0x06030031
ASCllI-Command [:PROPerty] :MODule#:I0Module:VOLTage
Type Index Access Volatility Cmd-Group
Attributes
132 Module RW \Y X
Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_ DRIVER (0x0002)
Description

This property specifies the I/0 module output voltage for the digital outputs. The output voltage
should be set before enabling the outputs of the I/0 module. Note that the voltage setting is global
for all digital output channels of the I/0 module.

The default value is SA_CTIL._ IO _MODULE_VOLTAGE_3V3 (0).
Valid Range

SA_CTL_IO_MODULE_VOLTAGE_3V3 (0),
SA_CTL_IO_MODULE_VOLTAGE_5V (1)

Example

// set the output driver voltage level to 5V
result = SA_CTL_SetProperty_ 132 (
dHandle, 0, SA_CTL_PKEY_IO_MODULE_VOLTAGE,
SA_CTL_IO_MODULE_VOLTAGE_5V
)

See Also

4.13.1 I/0 Module Options

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.13.3 1/0 Module Analog Input Range

C-Definition SA_CTL_PKEY IO MODULE_ANALOG_INPUT_RANGE
Code 0x060300A0
ASCllI-Command [:PROPerty] :MODule#:IOModule:AINPut : RANGe
Type Index Access Volatility Cmd-Group
Attributes
132 Module RW \Y X
Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_ DRIVER (0x0002)
Description

This property specifies the I/0 module analog input range. This setting configures the analog gain
settings of the ADCs of the I/0 module. The inputs allow bipolar as well as unipolar operation. To
achieve the best performance of the ADC it is recommended to always use the lowest full range
setting that fits the desired analog input range.

Note that the range setting does not influence the digital representation of the input value. The
signed value of 2'7 corresponds to a bipolar full range input of 10.24V. This means that e.g. an
analog voltage of 2.56V always returns a digital value of 32767 regardless of the actual range
setting. The advantage of this representation is that e.g. configured PID gains or threshold limits
must not be adjusted after changing the input range while the best matching analog gain is used
for the analog to digital conversion. The following table summarizes the digital representations of
the analog input voltage and their maximum values for the different gain settings:

Analog Voltage | Bipol. £10V | Bipol. +£5V | Bipol. £2.5V | Unipol. 10V | Unipol. 5V

+10.24V 131071 65535 32767 131071 65535
+5.12V 65535 65535 32767 65535 65535
+2.56V 32767 32767 32767 32767 32767

ov 0 0 0 0 0
-2.56V -32768 -32768 -32768 0 0
-5.12V -65536 -65536 -32768 0 0

-10.24V -131072 -65536 -32768 0 0

Note that the input range setting is global for all analog inputs of the I/0 module.

This property is stored to non-volatile memory and need not be configured on every power-up.
The default value is SA_ CTL_I0O_ MODULE_ANALOG_INPUT_RANGE_BI_ 10V (0).

Note that setting this property implicitly stops the channel and disables the control-loop.

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

WARNING

Magnetic driven positioners are not self-locking. Disabling the control-loop re-

moves any holding force from the positioner. Make sure not to damage any
equipment when the positioner changes its position unintentionally!

Valid Range

SA_CTL_IO_MODULE_ANALOG_INPUT_RANGE_BI_10V (0),
SA_CTL_IO_MODULE_ANALOG_INPUT_RANGE_BI_5V (1),
SA_CTL_IO_MODULE_ANALOG_INPUT_RANGE_BI_2_5V(2),
SA_CTL_TIO_MODULE_ANALOG_INPUT_RANGE_UNI_10V (3),
SA_CTL_IO_MODULE_ANALOG_INPUT_RANGE_UNI_5V (4)

Example

// set the analog input range to +/-5V

result = SA_CTL_SetProperty_132(
dHandle, 0, SA_CTL_PKEY_TIO_MODULE_ANALOG_INPUT_RANGE,
SA_CTL_TIO_MODULE_ANALOG_INPUT_RANGE_BI_5V

)

See Also

4.13.1 I/0 Module Options, 4.12.6 Aux I/0 Module InputO / Input1 Value

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.14 Input Trigger Properties

4.14.1 Device Input Trigger Mode

C-Definition SA_CTL_PKEY_DEV_INPUT_TRIG_MODE
Code 0x060D0087
ASCIlI-Command [:PROPerty] :DEVice: TRIGger: INPut : MODE

Type Index Access Volatility Cmd-Group
Attributes

132 Device RW \Y -
USB Interface SA_CTL_INTERFACE_USB (0x0001)
Ethernet Interface SA_CTL_INTERFACE_ETHERNET (0x0002)

Description

This property specifies the input trigger mode of the device. The input trigger may be used to
synchronize the device to external events. If no I/O module is available this property returns a
SA_CTL_ERROR_NO_IOM_ PRESENT error. Please refer to section 2.20 "Input Trigger" for more
information.

The default value is SA_CTIL. DEV_INPUT_TRIG_MODE_DISABLED (0).

Valid Range

SA_CTL_DEV_INPUT_TRIG_MODE_DISABLED (0),
SA_CTL_DEV_INPUT_TRIG_MODE_EMERGENCY_STOP (1),
SA_CTL_DEV_INPUT_TRIG_MODE_STREAM (2),
SA_CTL_DEV_INPUT_TRIG_MODE_CMD_GROUP (3)
SA_CTL_DEV_INPUT_TRIG_MODE_EVENT (4)

Example

// set input trigger mode to external stream sync
result = SA_CTL_SetProperty_132(
dHandle,
O 4
SA_CTL_PKEY_DEV_INPUT_TRIG_MODE,
SA_CTL_DEV_INPUT_TRIG_MODE_STREAM
)

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

See Also

4.14.2 Device Input Trigger Condition, 4.10.1 Stream Base Rate, 4.10.2 Stream External Sync Rate

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.14.2 Device Input Trigger Condition

C-Definition SA_CTL_PKEY DEV_INPUT_TRIG_CONDITION
Code 0x060D005A
ASCllI-Command [:PROPerty] :DEVice:TRIGger: INPut :CONDition
Type Index Access Volatility Cmd-Group
Attributes
132 Device RW \ -
USB Interface SA_CTL_INTERFACE_USB (0x0001)
Ethernet Interface SA_CTL_INTERFACE_ETHERNET (0x0002)
Description

This property defines the active edge for the input trigger signal.
The default value is SA_CTL_TRIGGER_CONDITION_RISING (0).
Valid Range

SA_CTL_TRIGGER_CONDITION_RISING (0), SA_CTL_TRIGGER_CONDITION_FALLING (1)
Example

// set input trigger condition to "rising"
result = SA_CTL_SetProperty_132(
dHandle,
0 ’
SA_CTL_PKEY_DEV_INPUT_TRIG_CONDITION,
SA_CTL_TRIGGER_CONDITION_RISING

See Also

4.14.1 Device Input Trigger Mode, 4.10.1 Stream Base Rate, 4.10.2 Stream External Sync Rate

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.15 Output Trigger Properties

4.15.1 Channel Output Trigger Mode

C-Definition SA_CTL_PKEY_CH_OUTPUT_TRIG_MODE

Code 0x060EQ0087

ASCIlI-Command [:PROPerty] :CHANnel#:TRIGger :OUTPut : MODE

Type Index Access Volatility Cmd-Group
Attributes
132 Channel RW \Y X

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTIL_MAGNETIC_DRIVER (0x0002)
Description

This property specifies the output trigger mode of a channel. Note that further configuration of
the output trigger should be done before it is enabled. If no I/0 module is available this property
returns a SA_CTL_ERROR_NO_IOM_PRESENT error.

Note for the position compare mode: if the Channel Position Compare Limit Max is set to a lower
value than the Channel Position Compare Limit Min then this misconfiguration is indicated by a
returned SA_CTL_ERROR_INVALID_CONFIGURATION error.

Please refer to section 2.21 "Output Trigger" for more information.

The default value is SA_ CTIL._ CH_OUTPUT_TRIG_MODE_CONSTANT (0).

Valid Range

SA_CTL_CH_OUTPUT_TRIG_MODE_CONSTANT (0),
SA_CTL_CH_OUTPUT_TRIG_MODE_POSITION_COMPARE (1),
SA_CTL_CH_OUTPUT_TRIG_MODE_TARGET_REACHED (2),
SA_CTL_CH_OUTPUT_TRIG_MODE_ACTIVELY_MOVING (3)

Example

// set output trigger mode for channel 1
result = SA_CTL_SetProperty_132(
dHandle,
1 14
SA_CTL_PKEY_ CH_OUTPUT_TRIG_MODE,

MCS2 Programmer’s Guide e T

4 PROPERTY REFERENCE

SA_CTL_CH_OUTPUT_TRIG_MODE_POSITION_COMPARE
);

See Also
4.15.4 Channel Position Compare Start Threshold, 4.15.5 Channel Position Compare Increment,

4.15.6 Channel Position Compare Direction, 4.15.2 Channel Output Trigger Polarity, 4.15.3 Channel
Output Trigger Pulse Width

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.15.2 Channel Output Trigger Polarity

C-Definition SA_CTL_PKEY_CH_OUTPUT_TRIG_POLARITY

Code 0x060EQ005B

ASCIl-Command [:PROPerty] : CHANnel#:TRIGger :OUTPut :POLarity

Type Index Access Volatility Cmd-Group
Attributes
132 Channel RW \Y X

Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_ DRIVER (0x0002)
Description

This property defines the polarity of the output trigger signal. If set to active high then the idle level
is low and a high pulse is generated when the trigger occurs. If set to active low then the idle level
is high and a low pulse is generated when the trigger occurs.

The default polarity is SA_CTL_TRIGGER_POLARITY_ ACTIVE_HIGH(1).

Valid Range

SA_CTL_TRIGGER_POLARITY_ACTIVE_LOW (0),
SA_CTL_TRIGGER_POLARITY_ACTIVE_HIGH (1)

Example

// set output trigger polarity for channel 1 to ‘active high
result = SA_CTL_SetProperty_132(
dHandle,
1,
SA_CTL_PKEY_CH_OUTPUT_TRIG_POLARITY,
SA_CTL_TRIGGER_POLARITY_ACTIVE_HIGH

See Also

4.15.1 Channel Output Trigger Mode, 4.15.4 Channel Position Compare Start Threshold, 4.15.5
Channel Position Compare Increment, 4.15.6 Channel Position Compare Direction, 4.15.3 Channel
Output Trigger Pulse Width

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.15.3 Channel Output Trigger Pulse Width

C-Definition SA_CTL_PKEY_CH_OUTPUT_TRIG_PULSE_WIDTH

Code 0x060E005C

ASCIl-Command [:PROPerty] : CHANnel#:TRIGger :OUTPut :PWIDth

Type Index Access Volatility Cmd-Group
Attributes
132 Channel RW \Y X

Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_ DRIVER (0x0002)
Description

This property specifies the pulse width of the trigger output pulse in ns.

Note that the configured pulse width includes the duration of the pulse as well as the duration of
the pause. E.g. when setting the Channel Output Trigger Pulse Width to 1000 ns pulses with 500 ns
high level and 500 ns low level will be generated.

The default pulse width is 1000 ns.

Valid Range

100ns...4 x 107 ns
Example

// set output trigger pulse width for channel 1 to lus
result = SA_CTL_SetProperty_132(

dHandle, 1, SA_CTL_PKEY_CH_OUTPUT_TRIG_PULSE_WIDTH, 1000
)i

See Also

4.15.1 Channel Output Trigger Mode, 4.15.4 Channel Position Compare Start Threshold, 4.15.5
Channel Position Compare Increment, 4.15.6 Channel Position Compare Direction, 4.15.2 Channel
Output Trigger Polarity

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.15.4 Channel Position Compare Start Threshold

C-Definition SA_CTL_PKEY_CH_POS_COMP_START_THRESHOLD

Code 0x060E0058

ASCllI-Command [:PROPerty] : CHANnel#:TRIGger :PCOMpare: THReshold[: STARt]

Type Index Access Volatility Cmd-Group
Attributes
164 Channel RW Vv X

Stick-Slip Piezo Driver SA_CTL_STICK_SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_DRIVER (0x0002)
Description

This property defines the start threshold value in pm or n° for the position compare output trigger.
As soon as the position passes this threshold in the configured direction (see Channel Position
Compare Direction) an output pulse is generated. Additionally the threshold is incremented by
the value of the Channel Position Compare Increment to define the next trigger threshold. Please
refer to section 2.21 "Output Trigger" for more information.

The default value is 1 x 10°.
Valid Range

-100 x 10"%...100 x 10'? pm or n°.
Example

// set output trigger start threshold for channel 1 to Imm
result = SA_CTL_SetProperty_164(

dHandle, 1, SA_CTL_PKEY_ CH_POS_COMP_START_ THRESHOLD, 1le9
)

See Also

4.15.1 Channel Output Trigger Mode, 4.15.5 Channel Position Compare Increment, 4.15.6 Channel
Position Compare Direction, 4.15.2 Channel Output Trigger Polarity, 4.15.3 Channel Output Trigger
Pulse Width

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.15.5 Channel Position Compare Increment

C-Definition SA_CTL_PKEY_CH_POS_COMP_INCREMENT
Code 0x060E0059
ASCIl-Command [:PROPerty] :CHANnel#:TRIGger :PCOMpare: INCRement
Type Index Access Volatility Cmd-Group
Attributes
164 Channel RW \Y X
Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_ DRIVER (0x0002)
Description

This property defines the position compare output trigger increment in pm or n°. Please refer to
section 2.21 "Output Trigger" for more information.

The default value is 1 x 10°.

Valid Range

1...1x 10" pmorn°.
Example

// set position compare increment for channel 1 to 100um
result = SA_CTL_SetProperty_164 (

dHandle, 1, SA_CTL_PKEY_CH_POS_COMP_INCREMENT, 100e6
)

See Also

4.15.1 Channel Output Trigger Mode, 4.15.4 Channel Position Compare Start Threshold, 4.15.6
Channel Position Compare Direction, 4.15.2 Channel Output Trigger Polarity, 4.15.3 Channel Out-
put Trigger Pulse Width

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.15.6 Channel Position Compare Direction

C-Definition SA_CTL_PKEY_CH_POS_COMP_DIRECTION
Code 0x060E0026
ASCIl-Command [:PROPerty] : CHANnel#:TRIGger :PCOMpare:DIRection
Type Index Access Volatility Cmd-Group
Attributes
132 Channel RW \Y X
Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)
Magnetic Driver SA_CTL_MAGNETIC_ DRIVER (0x0002)
Description

This property defines how the position value and the configured trigger threshold are compared
against each other.

The following trigger conditions are available:

0x00 SA_CTL_FORWARD_DIRECTION The trigger pulse is output when the position
value passes the threshold from below.

0x01 SA_CTL_BACKWARD_DIRECTION The trigger pulse is output when the position
value passes the threshold from above.

0x02 SA_CTL_EITHER_DIRECTION The trigger pulse is output when the posi-
tion value passes the threshold from below or
above.

Please refer to section 2.21 "Output Trigger" for more information.

The default direction is SA_ CTL_FORWARD DIRECTION (0x00).
Example

// set output trigger condition for channel 1 to forward
result = SA_CTIL_SetProperty_132(
dHandle,
1,
SA_CTL_PKEY_CH_POS_COMP_DIRECTION,
SA_CTL_FORWARD_DIRECTION

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

See Also

4.15.1 Channel Output Trigger Mode, 4.15.4 Channel Position Compare Start Threshold, 4.15.5
Channel Position Compare Increment, 4.15.2 Channel Output Trigger Polarity, 4.15.3 Channel Out-

put Trigger Pulse Width 4.15.7 Channel Position Compare Limit Min, 4.15.8 Channel Position Com-
pare Limit Max

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.15.7 Channel Position Compare Limit Min

C-Definition SA_CTL_PKEY CH POS_COMP_LIMIT MIN

Code 0x060E0020

ASCllI-Command [:PROPerty] : CHANnel#:TRIGger :PCOMpare : LMIN

Type Index Access Volatility Cmd-Group
Attributes
164 Channel RW \Y X

Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_ DRIVER (0x0002)
Description

This property defines the lower limit for the position compare output trigger in pm or n°. The limits
act as an additional gate for the generation of output pulses. Output pulses are only generated
when the current position lies between the configured minimum and maximum limits. Note that
the maximum limit must be configured to a higher value than the minimum limit for the limit
checks to be active. If both limits are set to the same value the checks are disabled and output
pulses are generated according to the configured start threshold, increment and direction. Please
refer to section 2.21 "Output Trigger" for more information.

The default value is 0.

Valid Range

-100 x 10"%...100 x 10'? pm or n°.
Example

// set position compare lower limit for channel 1 to Imm
result = SA_CTL_SetProperty_164 (

dHandle, 1, SA_CTL_PKEY_CH_POS_COMP_LIMIT_MIN, 1e9
)

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

See Also

4.15.1 Channel Output Trigger Mode, 4.15.4 Channel Position Compare Start Threshold, 4.15.5
Channel Position Compare Increment, 4.15.6 Channel Position Compare Direction, 4.15.2 Chan-

nel Output Trigger Polarity, 4.15.3 Channel Output Trigger Pulse Width, 4.15.8 Channel Position
Compare Limit Max

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.15.8 Channel Position Compare Limit Max

C-Definition SA_CTL_PKEY CH POS_COMP_LIMIT MAX

Code 0x060E0021

ASCllI-Command [:PROPerty] : CHANnel#:TRIGger :PCOMpare : LMAX

Type Index Access Volatility Cmd-Group
Attributes
164 Channel RW \Y X

Stick-Slip Piezo Driver SA_CTL_STICK SLIP_PIEZO_DRIVER (0x0001)

Magnetic Driver SA_CTL_MAGNETIC_ DRIVER (0x0002)
Description

This property defines the upper limit for the position compare output trigger in pm or n°. The
limits act as an additional gate for the generation of output pulses. Output pulses are only gener-
ated when the current position lies between the configured minimum and maximum limits. Note
that the maximum limit must be configured to a higher value than the minimum limit for the limit
checks to be active. If both limits are set to the same value the checks are disabled and output
pulses are generated according to the configured start threshold, increment and direction. Please
refer to section 2.21 "Output Trigger" for more information.

The default value is 0.

Valid Range

-100 x 10"%...100 x 10'? pm or n°.
Example

// set position compare upper limit for channel 1 to 2mm
result = SA_CTL_SetProperty_164 (

dHandle, 1, SA_CTL_PKEY_CH_POS_COMP_LIMIT_MAX, 2e9
)

MCS2 Programmer’s Guide 307 _

4 PROPERTY REFERENCE

See Also

4.15.1 Channel Output Trigger Mode, 4.15.4 Channel Position Compare Start Threshold, 4.15.5
Channel Position Compare Increment, 4.15.6 Channel Position Compare Direction, 4.15.2 Chan-

nel Output Trigger Polarity, 4.15.3 Channel Output Trigger Pulse Width, 4.15.7 Channel Position
Compare Limit Min

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.16 Hand Control Module Properties

4.16.1 Hand Control Module Lock Options

C-Definition SA_CTL_PKEY_HM_ LOCK_OPTIONS
Code 0x020C0083
ASCllI-Command [:PROPerty] :DEVice:HMODule:LOPTions [: CURRent]
Type Index Access Volatility Cmd-Group
Attributes
132 Device RW \Y -
USB Interface SA_CTL_INTERFACE_USB (0x0001)
Ethernet Interface SA_CTL_INTERFACE_ETHERNET (0x0002)
Description

This property defines the different possible lock states of an attached hand control module. The
value is a bit field containing independent flags with the following meaning:

Table 4.2 - Hand Control Module Lock Options Bits

m C-Definition Short Description

0 SA_CTL_HMI1_LOCK_OPT_BIT_GLOBAL Fully disables control over the hand
controller.

1 SA_CTL_HMI1_LOCK_OPT_BIT_CONTROL Disables the control inputs (Encoder,
Joystick, etc.).

4 SA_CTL_HM1_LOCK_OPT_BIT_CHANNEL_ MENU Hides the Channel Settings menu.

5 SA_CTL_HM1_ LOCK_OPT_BIT_GROUP_MENU Hides the Group Settings menu.

6 SA CTL_HM1 LOCK_OPT BIT SETTINGS_MENU Hides the General Settings menu.

7 SA_CTL_HM1 LOCK_OPT BIT LOAD_CFG_MENU Hides the Load Config menu.

8 SA CTL_HM1 LOCK_OPT BIT_ SAVE CFG_MENU Hides the Save Config menu.

9 SA_CTI_HMI_LOCK OPT_BIT_CTRI_MODE_PARAM MENU Hides the generic control mode pa-
rameter menu.

12 SA_CTL_HM1_LOCK_OPT_ BIT_ CHANNEL_NAME Hides the Set Channel Name menu
entry.

13 SA_CTL_HM1_LOCK_OPT_BIT_POS_TYPE Hides the Positioner Type menu entry.

14 SA_CTL_HM1_LOCK_OPT_BIT_SAFE_DIR Hides the Safe Direction menu entry.

Continued on next page

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

Table 4.2 - Continued from previous page

15 SA_CTL_HM1_LOCK_OPT_BIT_CALIBRATE Hides the Sensor Calibration menu.

16 SA_CTL_HM1_LOCK_OPT_BIT_REFERENCE Hides the Find Reference menu entry.

17 SA_CTL_HM1_LOCK_OPT BIT SET POSITION Hides the Set Zero Position menu en-
try.

18 SA_CTL_HM1_LOCK_OPT_BIT_MAX_CLF Hides the Max Closed-Loop Frequency
menu entry.

19 SA CTL_HM1 LOCK_OPT BIT POWER_MODE Hides the Sensor Power Mode menu
entry.

20 SA_CTL_HM1_LOCK_OPT_BIT_ACTUATOR_MODE Hides the Actuator Mode menu entry.

Undefined flags are reserved for future use. These flags should be set to zero.

Note that this property is volatile. In order to alter the lock bits across sessions the Hand Control
Module Default Lock Options property must be used.

Example

// disable control inputs for the hand control module
result = SA_CTL_SetProperty_132(

dHandle, 0, SA_CTL_PKEY_HM LOCK_OPTIONS,SA_CTL_HMI1_LOCK_OPT_BIT_CONTROL
)

See Also

4.16.2 Hand Control Module Default Lock Options

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.16.2 Hand Control Module Default Lock Options

C-Definition SA_CTL_PKEY_HM DEFAULT_LOCK_OPTIONS
Code 0x020C0084
ASCllI-Command [:PROPerty] :DEVice:HMODule:LOPTions:DEFault
Type Index Access Volatility Cmd-Group
Attributes _
132 Device RW NV -
USB Interface SA_CTL_INTERFACE_USB (0x0001)
Ethernet Interface SA_CTL_INTERFACE_ETHERNET (0x0002)
Description

This property specifies the default lock state of the hand control module at startup. It is the non-
volatile version of the Hand Control Module Lock Options property. See table 4.2 for a description
of the bit field.

Example

// hide channel and group menu by default
int32_t defaultLockState = (SA_CTL_HM1_LOCK_OPT_BIT_CHANNEL_MENU |
SA_CTL_HM1_TLOCK_OPT_BIT_GROUP_MENU) ;
result = SA_CTL_SetProperty_132(
dHandle, 0, SA_CTL_PKEY HM DEFAULT_ LOCK_OPTIONS, defaultLockState
)

See Also

4.16.1 Hand Control Module Lock Options

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.17 API Properties

4.17.1 Event Notification Options

C-Definition SA_CTL_PKEY_API_EVENT_NOTIFICATION_OPTIONS
Code 0xF010005D
ASClI-Command N/A
. Type Index Access Volatility Cmd-Group
Attributes
132 API RW \Y -
Description

This property may be used to configure the event notifications of the API. The value is a bit field
containing independent flags.

0 SA_CTL_EVT_OPT_BIT_REQUEST_READY_ ENABLED 0x00000001

Undefined flags are reserved for future use. These flags should be set to zero.

Request Ready Enabled (Bit 0) Enables the generation of request ready events. See section 2.3.5
"Request Ready Notification" for more information.

The default value is 0 (all APl events disabled).

Note that changing this property affects only new requests sent out after changing this property,
not requests that were sent out before but have not received an answer yet.

NOTICE

Although this property is a setting of the API, an active connection to a device is

still required. The setting applies to every individual device connection indepen-
dently. Closing the connection to a device resets the setting to its default.

Example

// enable the request ready events of the API

result = SA_CTL_SetProperty_132(
dHandle, 0, SA_CTL_PKEY_API_EVENT_NOTIFICATION_OPTIONS,
SA_CTL_EVT_OPT_BIT_REQUEST_READY_ENABLED

)

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

See Also

2.4 Event Notifications, 2.3.5 Request Ready Notification, 5.2.24 Request Ready

MCS2 Programmer’s Guide m _

4 PROPERTY REFERENCE

4.17.2 Auto Reconnect

C-Definition SA_CTL_PKEY_API_AUTO_RECONNECT
Code 0xF01000A1
ASClI-Command N/A
. Type Index Access Volatility Cmd-Group
Attributes
132 API RW \Y -
Description

This property configures the automatic reconnect feature of the API. In the default configuration
the reconnect feature is disabled. When enabled the API detects lost connections and tries to
reconnect to the device. Note that during the reconnect all device requests functions block until
the reconnect is finished.

NOTICE

Although this property is a setting of the API, an active connection to a device is

still required. The setting applies to every individual device connection indepen-
dently. Closing the connection to a device resets the setting to its default.

Valid Range

SA_CTL_ENABLED (0x01), SA_CTL_DISABLED (0x00)
Example

// enable automatic reconnect
result = SA_CTL_SetProperty_132(
dHandle, 0, SA_CTL_PKEY_ API_AUTO_RECONNECT, SA_CTL_ENABLED) ;

MCS2 Programmer’s Guide m _

5 EVENT REFERENCE

5.1 Event Summary

An event always carries a 32-bit parameter. The meaning of this parameter depends on the event.
The "Parameter" column in the following table indicates the usage of the parameter.

Table 5.1 - Event Summary

IS N) T

None 0x0000 317
Movement Finished 0x0001 Ch Result Code 317
Sensor State Changed 0x0002 Ch New State 319
Reference Found 0x0003 Ch N/A 319
Following Error Limit 0x0004 Ch N/A 320
Holding Aborted 0x0005 Ch Result Code 317
Positioner Type Changed 0x0006 Ch New Positioner Type Code 318
Phasing Finished 0x0007 Ch Result Code 318
Sensor Module State Changed 0x4000 Mod New State 320
Over Temperature 0x4001 Mod Temperature 320
Power Supply Overload 0x4002 Mod N/A 321
Power Supply Failure 0x4003 Mod N/A 321
Fan Failure State Changed 0x4004 Mod New State 322
Adjustment Finished 0x4010 Mod Result Code 322
Adjustment State Changed 0x4011 Mod New State 322
Adjustment Update 0x4012 Mod Result Code 323
Stream Finished 0x8000 Dev Stream Handle, Index, 323
Result Code
Stream Ready 0x8001 Dev Stream Handle 324
Stream Triggered 0x8002 Dev Stream Handle 324
Command Group Triggered 0x8010 Dev Transmit Handle, Res. Code 325
Hand Control Module State Changed 0x8020 Dev New State 325

Continued on next page

MCS2 Programmer’s Guide m _

5 EVENT REFERENCE

Table 5.1 - Continued from previous page

T — e e

Emergency Stop Triggered 0x8030 Dev
External Input Triggered 0x8040 Dev InputIndex 326
Request Ready 0xf000 Any RequestID, Request Type, 326
Data Type, Array Size,
Property Key
Connection Lost 0xf001 N/A N/A 327

MCS2 Programmer’s Guide m _

5 EVENT REFERENCE

5.2 Detailed Event Description

5.2.1 None
Definition
C Definition mmmm-
SA_CTIL_EVENT_NONE 0x0000
Description

This event type is a place holder indicating that no event occurred. The index and parameter fields
are undefined.

5.2.2 Movement Finished

Definition
C Definition mmmm-
SA_CTL_EVENT MOVEMENT FINISHED 0x0001 Result Code
Description

This event is generated when a channel has finished a movement command (either successful or
unsuccessful). See also section 2.7.7 "Movement Feedback".

Parameter

The event parameter holds the result code. If the movement command finished successfully then
the result is SA_CTL_ERROR_NONE. Otherwise the result code indicates what caused the failure.
See table A.1 for a list of result codes.

5.2.3 Holding Aborted

Definition
C Definition mmmm-
SA_CTL_EVENT HOLDING_ABORTED 0x0005 Result Code

MCS2 Programmer’s Guide _

5 EVENT REFERENCE

Description

This event is generated when a channel detects an endstop (or a configured following error limit
is exceeded) while in holding state. Note that setting some specific properties may also abort the
holding. E.g. disabling the power supply or amplifier as well as setting the sensor power mode
aborts the holding. Subsequently this event is generated.

Parameter

The event parameter holds the result code: SA_CTI_ERROR_END_STOP_REACHED in case the
holding was aborted due to an endstop or SA_CTL_ERROR_FOLLOWING_ERR_LIMIT in case the
holding was aborted due to exceeding a following error limit. See table A.1 for a list of result codes.

5.2.4 Positioner Type Changed

Definition
C Definition mmmm-
SA_CTL_EVENT_POSITIONER_TYPE_CHANGED 0x0006 Positioner Type Code
Description

This event is generated when a positioner type of a channel changes to a new type. Note that this
event is not sent to the interface which actually changed the type. This means that the event is
sent to the host PC if the positioner type was changed on the hand-control-module and vice versa.
In case of automatic configuration, the event will be sent to all available interfaces. See section 2.6
"Positioner Types" for more information.

Parameter

The event parameter holds the new positioner type code for the channel. Please refer to the MCS2
Positioner Types document for a list of possible positioner types.

5.2.5 Phasing Finished

Definition
SA_CTL_EVENT_PHASING_FINISHED 0x0007 Result Code

MCS2 Programmer’s Guide m _

5 EVENT REFERENCE

Description

This event is generated when a channel of a Magnetic Driver has finished a phasing sequence. See
section 2.22 "Phasing of Magnetic Driven Positioners" for more information.

Parameter

The event parameter holds the result code. If the phasing sequence finished successfully then the
result is SA_CTL_ERROR_NONE. Otherwise the result code indicates what caused the failure. See
table A.1 for a list of result codes.

5.2.6 Sensor State Changed

Definition

C Definition mmmm-
SA_CTL_EVENT_SENSOR_STATE_CHANGED 0x0002 New State
Description

A sensor was attached to or detached from a sensor module.

Parameter

The parameter value will be one of:
SA_CTL_EVENT_PARAM ATTACHED (0x00000001),
SA_CTL_EVENT_PARAM_DETACHED (0x00000000)

5.2.7 Reference Found

Definition
C Definition mmmm-
SA_CTL_EVENT_REFERENCE_FOUND 0x0003
Description

This event is generated during a reference movement. It is generated at the moment the physical
position has been determined. Depending on the configuration of the referencing the movement
might be continued and stopped at a later time. See section 2.7.2 "Referencing" for more infor-
mation.

MCS2 Programmer’s Guide m _

5 EVENT REFERENCE

5.2.8 Following Error Limit

Definition

mmmm-

SA_CTL_EVENT_FOLLOWING_ERR_LIMIT 0x0004

Description

This event is generated if the configured following error limit is exceeded during a closed-loop
movement. See section 2.14 "Following Error Detection" for more information.

5.2.9 Sensor Module State Changed

Definition
SA_CTL_EVENT_SM_STATE_CHANGED 0x4000 Mod New State
Description

A sensor module was attached to or detached from a driver module.

Parameter

The parameter value will be one of:
SA_CTL_EVENT_PARAM ATTACHED (0x00000001),
SA_CTL_EVENT_PARAM DETACHED (0x00000000)

5.2.10 Over Temperature

Definition
SA_CTL_EVENT OVER_TEMPERATURE 0x4001 Mod Temperature

MCS2 Programmer’s Guide m _

5 EVENT REFERENCE

Description

The module detected an over-temperature condition of a driver amplifier. Note that the amplifier
circuit is automatically disabled at the occurrence of an over-temperature condition. The device
must be cooled down before being able to continue to use the device. The Module State property
(SA_CTIL_MOD_STATE_BIT_OVER_TEMPERATURE) may be polled to know when the over tem-
perature condition has passed by.

Parameter

The parameter holds the measured temperature in °C.

5.2.11 Power Supply Overload

Definition
SA_CTL_EVENT_POWER_SUPPLY_OVERLOAD 0x4002 Mod
SA_CTL_EVENT_HIGH_VOLTAGE_OVERLOAD' 0x4002 Mod N/A
Description

The module detected an overload condition of the power supply. See section 2.9.3 "Hardware
Monitoring" for more information.

5.2.12 Power Supply Failure

Definition

mmmm-

SA_CTL_EVENT_POWER_SUPPLY_FAILURE 0x4003 Mod

Description

The module detected a failure condition or under-voltage of the power supply. See section 2.9.3
"Hardware Monitoring" for more information.

"This definition is deprecated and may be removed in future releases.

MCS2 Programmer’s Guide m _

5 EVENT REFERENCE

5.2.13 Fan Failure State Changed

Definition
SA_CTL_EVENT_FAN_FAILURE_STATE_CHANGED 0x4004 Mod New State
Description

The module detected a change of the state of the cooling fan failure detection.

Parameter

If a blockage was detected the parameter value will be one, if the blockage ended and the fan
spins freely again the parameter value will be zero.

5.2.14 Adjustment Finished

Definition
SA CTL_EVENT ADJUSTMENT FINISHED 0x4010 Mod Result Code
Description

This event is generated when a module adjustment process has finished (either successful or un-
successful).

Parameter

The event parameter holds the result code. If the adjustment finished successfully then the result
is SA_ CTL_ERROR_NONE. Otherwise the result code indicates what caused the failure. See table
A.1 for a list of result codes.

5.2.15 Adjustment State Changed

Definition
SA_CTL_EVENT_ADJUSTMENT_STATE_CHANGED 0x4011 Mod New State

MCS2 Programmer’s Guide m _

5 EVENT REFERENCE

Description

This event is generated when a module adjustment state changes.

Parameter

The event parameter holds the new state of the adjustment process.

5.2.16 Adjustment Update

Definition
SA_CTL_EVENT_ADJUSTMENT_ UPDATE 0x4012 Mod Result Code
Description

This event is generated when a module adjustment update occurs.

Parameter

The event parameter holds the result code. If the adjustment update finished successfully then
the result is SA_CTL_ERROR_NONE. Otherwise the result code indicates what caused the failure.
See table A.1 for a list of result codes.

5.2.17 Stream Finished

Definition
SA_CTL_EVENT STREAM FINISHED 0x8000 Dev Handle Index Result Code
Description

This event indicates that a trajectory stream has come to an end. See section 2.18 "Trajectory
Streaming" for more information.

MCS2 Programmer’s Guide m _

5 EVENT REFERENCE

Parameter

The parameter holds information to further specify the event.

+ Stream Handle The corresponding stream handle.
* Index The device/channel index that caused the given result code.

* Result Code The result of the trajectory streaming. If it finished successfully then the result
is SA__CTL_ERROR_NONE. Otherwise the result code indicates what caused the failure. See
table A.1 for a list of result codes.

5.2.18 Stream Ready

Definition
SA_CTL_EVENT_STREAM_READY 0x8001 Dev Handle Reserved
Description

This event indicates that the internal trajectory stream buffer contains enough data to start the
stream. In case of direct streaming the stream will start automatically. Otherwise the device is
ready to receive a start trigger for the stream. See section 2.18 "Trajectory Streaming" for more
information.

Parameter

The parameter holds the corresponding stream handle.

5.2.19 Stream Triggered

Definition
SA_CTL_EVENT_STREAM_TRIGGERED 0x8002 Dev Handle Reserved
Description

This event indicates that the controller has started to execute the trajectory stream. See section
2.18 "Trajectory Streaming" for more information.

MCS2 Programmer’s Guide m _

5 EVENT REFERENCE

Parameter

The parameter holds the corresponding stream handle.

5.2.20 Command Group Triggered

Definition
SA_CTL_EVENT_CMD_GROUP_TRIGGERED 0x8010 Dev Handle Reserved Result Code
Description

This event notifies that a command group has been executed (either directly or via a configured
external trigger). See section 2.17 "Command Groups" for more information.

Parameter

The parameter holds the corresponding transmit handle and result code.

5.2.21 Hand Control Module State Changed

Definition
SA_CTL_EVENT_SM_STATE_CHANGED 0x4000 Dev New State
Description

A hand control module was attached to or detached from the device.

Parameter

The parameter value will be one of:
SA_CTL_EVENT_PARAM ATTACHED (0x00000001),
SA_CTL_EVENT_PARAM DETACHED (0x00000000)

MCS2 Programmer’s Guide m _

5 EVENT REFERENCE

5.2.22 Emergency Stop Triggered

Definition

mmmm-

SA_CTL_EVENT_EMERGENCY_STOP_TRIGGERED 0x8030

Description

This event notifies that an emergency stop condition has been detected. See section 2.20.2 "Emer-
gency Stop Mode" for more information.

5.2.23 External Input Triggered

Definition
SA_CTL_EVENT_EXT_INPUT_TRIGGERED 0x8040 Input Index
Description

This event notifies that an falling or rising edge was detected on the external trigger input. See
section 2.20.5 "Event Trigger Mode" for more information.

Parameter

The parameter holds the index of the input trigger (currently always 0).

5.2.24 Request Ready

Definition
SA_CTL_EVENT_REQUEST_READY 0x£000 Property Key

| TR

Size Data Type RqQ. Type Rg. ID

MCS2 Programmer’s Guide m _

5 EVENT REFERENCE

Description

The request ready event is generated by the APl when the result of an asynchronous request
is received. The event is also generated in case of a request timeout or any other error. After
the event has been received the result of the asynchronous operation can be retrieved using the
SA_CTL_ReadProperty_x, SA_CTL_WaitForWrite functions. By waiting for this event, it is
guaranteed that these functions won't block and return a result immediately. This event is not
generated if the retrieve function for this request has already been called.

This event needs to be enabled using the Event Notification Options property.

Parameter

The parameters store information needed to retrieve the result of the asynchronous request. The
index parameter is same index as passed to the request function. Depending on the property key
this is either a device, module or channel index.

* Rq. ID The request ID is identical to the one returned by the asynchronous request function
and can be used to associate this event with open requests.

* Rq. Type The request type allows to differentiate between read and write requests. Possible
values are SA_CTL_EVENT_REQ_READY_TYPE_READ (0x00) or
SA_CTL_EVENT_REQ_READY_ TYPE_WRITE (0x01)

+ Data Type Indicates the type of the requested property. This information is needed to
call the correct SA_CTIL_ReadProperty_x function. If the property read failed, the data
type is unknown and has a value of SA_CTL_DTYPE_NONE (0xff). In this case any of the
SA_CTL_ReadProperty_x functions can be used to retrieve the error code.

+ Size The array size stores the size of the received value. For integer properties this is the
number of elements and for string properties the number of characters. Note that for strings
the required buffer size is one byte larger because of the null terminator. This field is only
set for successful property read requests.

* Property Key Key of the requested property.

Parameters can be extracted using the following macros:
SA_CTL_EVENT_REQ_READY_ID (),
SA_CTL_EVENT_REQ_READY_TYPE (),
SA_CTL_EVENT_REQ_READY_DATA_TYPE (),
SA_CTL_EVENT_REQ_READY_ARRAY_SIZE (),
SA_CTL_EVENT_REQ_READY_ PROPERTY_KEY ()

5.2.25 Connection Lost

Definition
C Definition mmmm-
SA_CTL_EVENT CONNECTION_LOST 0xf001

MCS2 Programmer’s Guide _

5 EVENT REFERENCE

Description

The connection to the device has been lost. All functions requiring communication with the de-
vice will fail with SA_CTI_ERROR_COMMUNICATION_FATLED. After receiving this event the device

should be closed using SA_CTL_Close.

MCS2 Programmer’s Guide m _

6 ASCII INTERFACE

As an alternative to control the MCS2 using the SmarActCTL library, the device also supports con-
trol using an ASCII protocol. To simplify the entry and overall operation this protocol is (with some
exceptions) strongly orientated towards the well established SCPI ' standard.

NOTICE

The ASCII Interface is only available for devices with an ethernet port. For general

information on how to configure the ethernet interface please refer to the MCS2
User Manual document.

6.1 Connection Setup

A connection to the device can be established via raw TCP/IP or by using a telnet client. The settings
needed to access the ASCII Interface include:

» the current IP address (default is 192.168.1.200).
+ the fixed port number 55551.

One way to connect and communicate with the device through the ASCII Interface is by using a
telnet client. In the following steps we will use the multipurpose client PuTTY? to read the serial
number of an attached MCS2 controller.

N

. Download and start PUTTY (www . putty.org)

In the tree view to the left select the session category
Select telnet as connection type (see figure 6.1a)

Fill in the device's IP address and the correct port (55551)
Name and save the session options (optional)

A click on open will start the session (see figure 6.1b)

N o v o~ W N

You are now ready to communicate with the device
(e.g. to query the serial number).

'Standard Commands for Programmable Instruments (www . ivifoundation.org/scpi)
20Open source SSH and telnet client PUTTY (www .putty.org)

MCS2 Programmer’s Guide m _

www.putty.org
www.ivifoundation.org/scpi
www.putty.org

6 ASCII INTERFACE

#8 PuTTY Configuration >
Category:

= Sgssion Basic options for your PuTTY session
- Llogging . .
| Termingl Specify the destination you want to connect to B 192168120 puTTY - - <

.. Keyboard Host Mame (or IP address) Port

Bel [192.168.1.200 | [35551

i Features Connection type:
= Window ORaw ®Telnet ORlogin O5SH O Serial
o Appea!ance Load, save or delete a stored session

- Behaviour

Translation Saved Sessions

- Selection |mcs2_telnet |
P Colours Default Settings =]
=) Connection mcs2 raw =

- Data T

. Proxy

.. Telnet Delete

- Rlogin

+- 55H

- Seid Close window on exit:

(O Aways (O Never (® Onlyon clean exit
(b) PUTTY Terminal Window

About Cpen Cancel

(a) PuTTY Configuration Window

Figure 6.1: Communicating with the MCS2 using PuTTY

6.1.1 Note On Message Termination

When communicating with the device via raw TCP/IP make sure to use the correct message ter-
mination for commands sent to and answers received from the device. The message termination
characters used by the MCS2 are <CR><LF> (carriage return + line feed).

6.2 SCPI Basics

Initially developed due to the need of a common interface language between computers and in-
struments, SCPI is nowadays a well established open standard to communicate with all kinds of
devices. Due to it's easy to learn and mostly self-explanatory ASCII syntax it is usable with any
computer language or application environment.

The following sections will give an overview on how to get started using SCPI with the MCS2. More
information on the SCPI specification can be found on the IVI Foundation websites 3.

6.2.1 SCPI Conformance Information

Although being strongly orientated towards the SCPI standard (especially concerning the com-
mand syntax rules) we do not claim to be fully conform. Due to its rich set of functions and
flexibility, the MCS2 does not fit in a predefined instrument class, but uses the well defined SCPI
syntax and communication mechanisms for a convenient operation experience.

Swww.ivifoundation.org/specifications/

MCS2 Programmer’s Guide m _

www.ivifoundation.org/specifications/

6 ASCII INTERFACE

6.2.2 Command Structure

SCPI differentiates between common and instrument commands. Common commands always
start with an asterisk (*) and only consist of one keyword.

Common Command *IDN?

The behavior of these commands is mostly predefined by the standard and incorporates some
general mechanisms like issuing a reset or reading global status bytes. Section 6.6.1 holds a table
describing the common commands supported by the MCS2.

To access all the different properties and functions the MCS2 provides, instrument commands
are used. These commands are device-dependent and follow a hierarchical tree system approach.
Associated properties are therefore grouped into different subsystems (branches) creating a com-
mand tree like the one below.

[:PROPerty] /! "root"
:DEVice // "branch"

: SNUMber // "leaf"

:STATe // "leaf"
:CHANnel# // "branch"

:VELocity // "leaf"

As an example we now want to read the device’s serial number. The assembling of a command
always starts at the root of the tree. To obtain the value of a particular leaf the full path to it
must be specified. This is achieved by traversing the command tree from root (: PROPerty) to
leaf (: SNUMber) and concatenate the different keywords on the way from left to right. As result
we get the full command string:

Instrument Command :PROPerty:DEVice:SNUMber?

Each command has both a long and a short form. Only the exact long or the exact short form
will be accepted with lower- and uppercase letters being ignored (case-insensitive).

The following commands would all be accepted by the MCS2.

Long Form (mixed case) :PROPerty:DEVice: SNUMber?
Long Form (all lower-case) :property:device:snumber?
Short Form (all upper-case) :PROP:DEV:SNUM?
Short Form (all lower-case) :prop:dev:snum?

NOTICE

To keep track of long and short command forms, all of the following examples

will use upper case letters for short commands and lower case letters for the
remaining part of the corresponding long form.

A setup containing an MCS2 normally holds a variable number of channels and/or modules. To
address a particular module or channel, the corresponding index has to be added when as-
sembling the command. In general, if a command tree keyword contains a hash symbol (#) , that

MCS2 Programmer’s Guide m _

6 ASCII INTERFACE

symbol must be replaced by the desired module or channel index. Thus a : CHANnel# keyword
becomes : CHANnel2 when addressing the channel with index 2.

Many commands take an additional command parameter (e.g. to set a channel’s velocity). Com-
mand and parameter must be separated by at least one space character. Command parameters
can be of type numeric (int32/64) or type string and must be given according to the base unit (e.g.
pm or n°).

The following command needs the channel's move velocity as a parameter given in &7,
Set velocity for channel 0 to 17" :PROPerty:CHANnelO:VELocity 1000000000

For properties that are (also) readable, the query form of a command is generated by appending
a question mark (?) to the command. However, not all commands have a query form, and some
commands exist only in query form, see subsection 6.2.4 (Queries).

Query velocity for Channel 0 :PROPerty:CHANnelO:VELocity?
Response (in &) 1000000000

6.2.3 Traversing the Command Tree

As stated in the previous section 6.2.2 (Command Structure) commands are created by concate-
nating keywords along the command tree. This section is intended to explain some more rules
and possibilities on how to create proper commands.

+ When assembling commands, colons (:) are used to separate the different keywords.

+ Square brackets ([]) enclose a keyword that is optional (default) and may be omitted. Thus
a command tree, starting with the root [:PROPerty] may lead to the following commands:

- :PROPerty:DEVice:SNUMber?

- :DEVice:SNUMber?
+ Multiple commands may be sent in one message to the device (compound command).

The first command must always be referenced to the root node (e.g. :CHANnel0). Subsequent
commands however, are referenced to the same tree level as the previous command in a message.
These commands have to be separated by a semicolon (;) to the previous command.

Set channel 0 move mode :CHANnel0:MMODe 1

Set channel 0 velocity :CHANnelO:VELocity 10000

Set channel 0 acceleration :CHANnelO:ACCeleration 0

Set all in one message :CHANnel0:MMODe 1;VELocity 10000;ACCeleration 0

Set channel O positioner type :CHANnelO:PTYPe 300

Note that sending a compound command message to the device may complicate error handling
if one of the containing commands fails. It is therefore recommended to send each command as
a single message to ensure a deterministic and stable program sequence.

MCS2 Programmer’s Guide m _

6 ASCII INTERFACE

6.2.4 Queries

To read the value of a specific device, module or channel property a query command has to be
sent to the MCS2. Queries are generated by traversing the command tree and appending the final
command with a question mark (?). When the device receives a valid query form of a command, a
response is generated containing the current setting or value associated with the property.

Further note that
+ query responses do not include the command header but only the requested value.
+ for numeric properties, the result is returned as an int32/64 type (see Property Summary).
« for string properties, the result is returned as string.

* responses to compound query messages are separated by a semicolon ;).

Single query :CHANnelO:PTYPe?
Response 300

Single query :CHANnelO0:MMODe?
Response 2

Compound Query :CHANnelO:PTYPe?;MMODe?
Response 300; 2

To check whether a property is readable, writable or both, see section 6.6.3 (Property Command
Tree).

6.3 Basic Programming Examples

This section shows a few examples how communication with the device might look using the short
command forms and omitting the optional (default) : PROPerty command tree keyword. For
more info on long and short command forms, see 6.2.2 (Command Structure). Note that com-
mands are only executed after the device receives the <NL> character, see 6.1.1 (Note On Message
Termination).

6.3.1 Get Property

// get number of bus modules from device
>> :DEV:NOMO?

// response

<< 1

MCS2 Programmer’s Guide m _

6 ASCII INTERFACE

6.3.2 Set Property

// set move mode to open—-loop step mode (4) for channel 0
>> :CHANO:MMOD 4

6.3.3 Calibrate

// set calibration mode for channel 0 (start direction: forward)
>> :CHANO:CAL:OPT O

// start calibration sequence

>> :CALO

6.3.4 Reference

// set find reference mode for channel 0 (default is 0)
>> :CHANO:REF:0PT O

// start referencing sequence

>> :REFO

6.3.5 Move

// set move mode to closed-loop relative (1) for channel 0
>> :CHANO:MMOD 1

// set move velocity [in pm/s]

>> :CHANO:VEL 500000000

// disable acceleration control

>> :CHANO:ACC O

// start actual movement, value is interpreted as

// relative position (in pm)

>> :MOVEO 500000000

6.3.6 Stop

// send stop command to channel 0
>> :STOPO

MCS2 Programmer’s Guide m _

6 ASCII INTERFACE

6.3.7 Movement State

// get current state for channel 0

>> :CHANO:STAT?

// response holds the state bitmask as int32 value

<< 37

// decoding the value leads us to the following active state bits
// — channel 0 is actively moving (bit 0 is set)

// — channel 0 is calibrating (bit 2 is set)

// — channel 0 has a sensor present (bit 5 is set)

6.3.8 Error Handling

To access information on errors due to either incorrect assembling of command messages or
general handling with the device, the ASCII Interface holds a user accessible error queue.

This queue is implemented as FIFO* and can be accessed by the : SYSTem:ERRor subsystem.
Errors that occur during run-time can therefore be detected by executing the following queries.

:SYSTem:ERRor:COUNt? Returns the number of errors the queue contains
:SYSTem:ERRor [:NEXT]? Returns the NEXT error and removes it from the queue
(will return 0, "No Error" if empty)

Error codes returned are divided in
+ a No Error Code which is equal to zero.
* SCPI error codes which are less than zero, see 6.4.
+ and SmarActControl error codes which are greater than zero, see A.1.

A program sequence with error checking might look like the following:

// try to get current state for channel 0

>> :CHANO:STAT?!

// due to an invalid character in this command (!), there is no response
// by checking the error count

>> :SYST:ERR:COUN?

// we see that there is one error inside the error queue
<< 1

// to get more information we retrieve this error

>> :SYST:ERR:NEXT?

// and get the following response

<< =101, "Invalid character"

“First error In will be the First error Out

MCS2 Programmer’s Guide m _

6 ASCII INTERFACE

NOTICE

Note that when working with the error queue, it might already hold errors gener-

ated by previous commands. An incorrect command can even result in multiple
errors being added to the queue. It is therefore good practice to query all possi-
ble errors before sending the next command.

MCS2 Programmer’s Guide m _

6 ASCII INTERFACE

6.4 Using Command Groups

Command groups offer the possibility to define an atomic group of commands that is executed
synchronously. In addition, a command group may not only be triggered via software, but alter-
natively via an external trigger. For more general information on Command Groups please refer
to section 2.17.

This section describes how to take advantage of Command Groups when using the ASCll interface.
6.4.1 Command Set

The following commands and queries are used to control a Command Group.

:CGRoup:OPEN <triggerMode> Opens a Command Group using the given trigger mode.

:CGRoup:CLOSe Closes a previously opened Command Group.
:CGRoup:ABORt Aborts a previously opened Command Group.
:CGRoup:FINished? Indicates whether the Command Group is finished.
:CGRoup:VALues? Requests the values that were queried inside a

Command Group.

Note that, when using the ASCII interface, the number of concurrently active Command Groups is
limited to one. Figure 6.2 show the general process for either writing or reading multiple properties
using a Command Group.

MCS2 Programmer’s Guide 337 _

.

Open Command Group

with desired Trigger Mode

~

>> :CGR:OPEN <trigger mode>)

Y

Y

6 ASCII INTERFACE

/Append Commands N /Append Queries
>> :CHANO:MMOD 1 >> :CHANO:POS?
>> :MOVEO 1000000 >> :CHAN1:POS?
>> :CHAN1:MMOD 1

\>> :MOVE1 2000000 J _

, v o v
Close Command Group Close Command Group
>> :CGR:CLOS >> :CGR:CLOS

- ¢ J N ¢

inrs .. N Y =
Wait For Finished Flag Wait For Finished Flag
>> :CGR:FIN? >> :CGR:FIN?

\=< 1 Y, \=<< 1 #

(Query Value(s) D
>> :CGR:VAL?
(=< 1000000; 2000000

[

Figure 6.2: Command Group procedure(s)

The CGR:0PEN command is used to activate a Command Group using the given trigger mode.
All of the following commands and queries will be appended to this Command Group. Note that
properties missing the Groupable flag will lead to an error when put into a Command Group. Send-
ing the CGR:CLOS command either starts the Command Group's execution immediately (trigger
mode direct) or defers the execution until an external event occurs (trigger mode external).

The CGR:FIN query is used to check if execution of all grouped commands has been started or if
the requested values are available (return code 1). It furthermore indicates if a Command Group
has been aborted either by the user or the device itself (return code 2).

For finished Command Groups that contained at least one query, the CGR: VAL query is used to
read the resulting values from the device.

6.4.2 Examples

This section contains some examples to further demonstrate the different use cases of Command
Groups.

MCS2 Programmer’s Guide m _

6 ASCII INTERFACE

Synchronized movement using direct trigger

The following sequence uses a Command Group to synchronize the closed-loop movement of two
channels. By using the Direct Trigger mode, the commands execution starts right after closing the
Command Group.

// open command group in direct trigger mode (0)

// (every following command is not executed but put into the group)
>> :CGR:0PEN 0

// set move modes of channel 0 and 1 to closed-loop relative (1)
>> :CHANO:MMOD 1

>> :CHAN1:MMOD 1

// move channel 0 to +1mm

>> :MOVEO 1000000000

// move channel 1 to +0.5mm

>> :MOVE1l 500000000

// close command group

// (execution of grouped commands starts now)

>> :CGR:CLOS

// the command group’s finished value signalizes

// that the command group has been processed

>> :CGR:FIN?

<< 1

Synchronized position query using direct trigger

The following sequence uses a Command Group to synchronize the position sampling of two chan-
nels. By using the Direct Trigger mode, the queries’ execution starts right after closing the Com-
mand Group.

// open command group in direct trigger mode (0)
// (every following query 1s not executed but put into the group)
>> :CGR:0PEN 0

// query positions of channel 0 and 1

>> :CHANO:POS?

>> :CHAN1:POS?

// close command group

// (execution of grouped commands starts now)

>> :CGR:CLOS

// the command group’s finished value signalizes
// that the command group has been processed

>> :CGR:FIN?

<< 1

// we can now query the resulting value (s)

>> :CGR:VAL?

<< 1000000000; 500000000

MCS2 Programmer’s Guide m _

6 ASCII INTERFACE

Synchronized movement using external trigger

The following sequence uses a Command Group to synchronize the closed-loop movement of
two channels. By using the External Trigger mode, the commands execution is deferred until the
external event occurs. Note that the Input Trigger has to be configured accordingly in advance.
See section 2.20 "Input Trigger" for more information.

// open command group in external trigger mode (1)
// (every following command 1s not executed but put into the group)
>> :CGR:0PEN 1

// set move modes of channel 0 and 1 to closed-loop relative (1)
>> :CHANO:MMOD 1

>> :CHAN1:MMOD 1

// move channel 0 to +I1mm

>> :MOVEO 1000000000

// move channel 1 to +0.5mm

>> :MOVE1l 500000000

// close command group

// (execution of grouped commands is deferred)

>> :CGR:CLOS

// the command group’s finished value signalizes

// that the command group has NOT been processed yet
>> :CGR:FIN?

<< 0

/Y aoo

// process some other commands/queries

/S

—-> external event occurs

// the command group’s finished value signalizes

// that the command group has now been processed

>> :CGR:FIN?

<< 1

6.5 Streaming Trajectories

Trajectory streaming allows a multi DoF manipulator to follow specific trajectories using the MCS2
controller. All participating positioners are moved synchronously along the defined trajectory. For
more general information please refer to section 2.18 "Trajectory Streaming".

This section describes how to take advantage of Trajectory Streaming when using the ASCII inter-
face.

6.5.1 Command Set

The following commands and queries are used to control a trajectory stream:

MCS2 Programmer’s Guide m _

6 ASCII INTERFACE

:STReam:OPEN <triggerMode> Opens a stream using the given trigger mode.

:STReam:BFREe? Returns the number of free buffer slots.
:STReam:FRAMe <frameData> Transmits the desired frame.
:STReam:CLOSe Closes a running stream.
:STReam:ABORt Aborts a running stream.

Before starting a stream make sure to configure the properties below as desired:
Stream Base Rate Configures the stream base rate in Hz (See page 262).
Stream External Sync Rate Configures the external synchronization rate in Hz (See page 263).

Stream Options Configures the stream behavior (See page 265).

NOTICE
When using the ASCIl interface, the maximum reachable streaming frequency is
reduced, depending on the number of involved channels and the programming

sequence.
To prevent buffer under-/overruns, make sure to always supply enough stream
frames according to the remaining free buffer slots.

MCS2 Programmer’s Guide m _

6 ASCII INTERFACE

Figure 6.3 shows the general procedure for a complete streaming sequence.

v

Open Stream
with desired Trigger Mode

>> :STR:OPEN <triggerMode>

(Check the number of free)
buffer slots

A

>> :STR:BFRE?
<< "number of free slots"

AN J

{

/Send frames to device N\

>> :STR:FRAM <frame 0>
>> :STR:FRAM <frame 1>
>> :STR:FRAM <frame 2>
>> ...

Close Stream |

>> :STR:CLOS

:

Figure 6.3: Streaming sequence

The STR:0PEN command is used to open a stream using the given trigger mode.

By reading the number of available buffer slots using the STR: BFRE query, the number of frames
that can currently be transferred to the device can be calculated. The number of free buffer slots
is given in positions, thus a stream containing two channels would take up two buffer slots. Using
the STR:FRAM command, the device is now provided with the desired positions for each chan-
nel. A frame is assembled using a channel index following the corresponding absolute position,
separated by comma. This mechanism is used until all frames have been sent to the device.

The STR:CLOS command is used to close the stream.

6.5.2 Example

The following example configures and sends a stream to the device containing positions for chan-
nel0and 1.

// configure the streaming base rate to 100Hz

>> :DEV:STR:BAS 100

// configure the streaming options to default (0)
>> :DEV:STR:0PT O

MCS2 Programmer’s Guide m _

6 ASCII INTERFACE

// open stream in direct trigger mode (0)

>> :STR:0OPEN O

// check the current buffer level

>> :STR:BFRE?

<< 1024

// We have 1024 position buffer slots available.

// (This effectively results in 1024/numberOfChannels=512 frame slots)
// Now we transmit our frames containing positions for channel 0 and 1.
>> STR:FRAM 0,1000000,1,100000

>> STR:FRAM 0,2000000,1,150000

>> STR:FRAM 0,3000000,1,200000

>> L.

// Streaming starts as soon as enough data has been received by the
// device. Repeat this process until all desired frames have been

// sent to the device.

// If all frames have been transferred, close the stream.

>> :STR:CLOS

// The remaining frames are processed until the stream is completed.

6.6 Command Summary

Section 6.6.1 contains an overview of the supported set of SCPI common commands and their
behavior in context of the MCS2. The following tables in section 6.2 and 6.3 show the command
hierarchy as well as the necessary information to assemble all instrument commands available
through the ASCII Interface.

6.6.1 Common Commands

In general, the ASCII Interface supports all mandatory common commands required by the SCPI
standard. Nevertheless most of them are not needed for controlling the device. Table 6.1 shows
an overview of the implemented common commands and their utilization.

Table 6.1 - Common Commands

Canemonic | ame 1= pesarpion

*CLS Clear Status Command This command clears all status data
structures.

*ESE Standard Event Status Enable Command This command has no effect.

*ESE? Standard Event Status Enable Query This command has no effect.

*ESR Standard Event Status Register Query This command has no effect.

*IDN? Identification Query This command returns information

about the device such as
manufacturer and serial number.

Continued on next page

MCS2 Programmer’s Guide m _

6 ASCII INTERFACE

Table 6.1 - Continued from previous page

Cnemonic | ame " oescipion

*OPC Operation Complete Command This command has no effect.

*OPC? Operation Complete Query This command has no effect (will
always return 1).

*RST Reset Command Resets the device (reconnect
necessary!).

*SRE Service Request Enable Command This command has no effect.

*SRE? Service Request Enable Query This command has no effect.

*STB? Read Status Byte Query Returns the status byte.

*TST? Self-Test Query This command has no effect (will

always return 0).

*WAI Wait-to-Continue Command This command has no effect.

6.6.2 Movement Commands

Table 6.2 shows the commands that generate or stop movement. For detailed information on a
movement command please follow the corresponding page to the Function Reference chapter.

Table 6.2 - Movement Summary

S ommand e L e s e

:MOVE # 164 W 141
:STOP# - Ch W 143
:CALibrate# - Ch W 137
:REFerence# - Cch W 139

6.6.3 Property Command Tree

Table 6.3 shows the command hierarchy to access all the properties available for a proper device
configuration. For detailed information on a property please follow the corresponding page to the
Property Reference chapter.

Table 6.3 - Property Summary
mm
:PROPerty]
:DEVice

:NOCHannels 132 Dev R Number of Channels 157
Continued on next page

MCS2 Programmer’s Guide m _

6 ASCII INTERFACE

Table 6.3 - Continued from previous page

I T M R T

:NOBModules R Number of Bus Modules 158
:ITYPe 132 Dev R Interface Type 159
:STATe 132 Dev R Device State 160
: SNUMber String Dev R Device Serial Number 161
: NAME String Dev RW Device Name 162
:ESTop
:MODE 132 Dev RW Emergency Stop Mode 163
:NETWork
:DISCover
:MODE 132 Dev RW Network Discover Mode 164
:DHCP
:TIMeout 132 Dev RW Network DHCP Timeout 166
:STReaming
:BASerate 132 Dev RW Stream Base Rate 262
:SYNCrate 132 Dev RW Stream External Sync Rate 263
:0OPTions 132 Dev RW Stream Options 265
: LOAD : MAXimum 132 Dev R Stream Load Maximum 266
:HMODule
:LOPTions
[:CURRent] 132 Dev RW Hand Control Module Lock Op- 309
tions
:DEFault 132 Dev RW Hand Control Module Default 311
Lock Options
: TRIGger
: INPut
:MODE 132 Dev RW Device Input Trigger Mode 294
:CONDition 132 Dev RW Device Input Trigger Condition 296
:MODule#
:PSUPply
[:ENABled] 132 Mod RW Power Supply Enabled 168
: TYPE 132 Mod R Module Type 170
:STATe 132 Mod R Module State 171
:NOMChannels 132 Mod R Number of Bus Module Chan- 169
nels

Continued on next page

MCS2 Programmer’s Guide m _

6 ASCII INTERFACE

Table 6.3 - Continued from previous page

s commandree Lime L Lol vy e

:TEMPerature Mod R Bus Module Temperature 270
:IOModule
:OPTions 132 Mod RW I/0 Module Options 289
:VOLTage 132 Mod RW I/0 Module Voltage 291
:AINPut
:RANGe 132 Mod RW I/0 Module Analog Input Range 292
:AUXiliary
:DINPut
[:VALue] 132 Mod R Aux Digital Input Value 284
:DOUTput
[:VALue] 132 Mod RW Aux Digital Output Value / Set / 285
Clear
:SET 132 Mod W Aux Digital Output Value / Set / 285
Clear
:CLEar 132 Mod W Aux Digital Output Value / Set /285
Clear
:AOUTput
[:VALue] # 132 Mod RW Aux Analog Output ValueO / 287
Value1
:CHANnel#
:AMPLifier
[:ENABled] 132 Ch RW Amplifier Enabled 174
:MODE 132 Ch RW Amplifier Mode 176
:PCONtrol
:OPTions 132 Ch RW Positioner Control Options 178
:STARtup:0PTions 132 Ch RW Startup Options 172
:ACTuator
:MODE 132 Ch RW Actuator Mode 180
:CLINput
[:SELect] 132 Ch RW Control Loop Input 182
:SENSor
:SELect 132 Ch RW Sensor Input Select 184
[:VALue] 164 Ch R Control Loop Input Sensor Value 218
:AUXiliary

Continued on next page

MCS2 Programmer’s Guide m _

6 ASCII INTERFACE

Table 6.3 - Continued from previous page

I e K 2 R Y
164

:VALue] Control Loop Input Aux Value 219

:PTYPe

[:CODE] 132 Ch RW Positioner Type 186

: NAME String Ch R Positioner Type Name 188
:MMODe 132 Ch RW Move Mode 189
: TYPE 132 Ch R Channel Type 191
:STATe 132 Ch R Channel State 192
:POSition

[: CURRent] 164 Ch RW Position 193

: TARGet 164 Ch R Target Position 195

: SCAN 164 Ch R Scan Position 196

:MSHift 132 Ch RW Position Mean Shift 215
: SCAN

:VELocity 164 Ch RW Scan Velocity 197
:HOLDtime 132 Ch RW Hold Time 198
:VELocity 164 Ch RW Move Velocity 200
:ACCeleration 164 Ch RW Move Acceleration 202
:MCLFrequency

[:CURRent] 132 Ch RW Max Closed Loop Frequency 204

:DEFault 132 Ch RW Default Max Closed Loop Fre- 205

quency

: STEP

:FREQuency 132 Ch RW Step Frequency 206

:AMPLitude 132 Ch RW Step Amplitude 207
:FERRor 164 Ch R Following Error 208
:FELimit 164 Ch RW Following Error Limit 209
:BSOPtions 132 Ch RW Broadcast Stop Options 210
:SENSor

:MODE 132 Ch RW Sensor Power Mode 211

:DELay 132 Ch RW Sensor Power Save Delay 213
:SDIRection 132 Ch RW Safe Direction 216
:LSCale

:OFFset 164 Ch RW Logical Scale Offset 222

Continued on next page

MCS2 Programmer’s Guide el

6 ASCII INTERFACE

Table 6.3 - Continued from previous page

srcommandree Lime Lin L] vonry T rae
132

:INVersion RW Logical Scale Inversion
:RLIMit
:MIN[:CURRent] 164 Ch RW Range Limit Min 225
:MAX [: CURRent] 164 Ch RW Range Limit Max 226
:MIN:DEFault 164 Ch RW Default Range Limit Min 227
:MAX:DEFault 164 Ch RW Default Range Limit Max 228
:CALibration
:0PTions 132 Ch RW Calibration Options 229
:SCORrection
:0PTions 132 Ch RW Signal Correction Options 231
:REFerencing
:OPTions 132 Ch RW Referencing Options 233
:DTRMark 132 Ch R Distance To Reference Mark 235
:DCINverted 132 Ch RW Distance Code Inverted 236
:ERRor 132 Ch R Channel Error 267
:TEMPerature 132 Ch R Channel Temperature 269
:PFReason 132 Ch R Positioner Fault Reason 271
:MOTor : LOAD 132 Ch R Motor Load 273
:TTZVoltage
:THReshold
[:HOLD] 132 Ch RW Target To Zero Voltage Hold 220
Threshold
:AUXiliary
:PTYPe 132 Ch RW Aux Positioner Type 274
:PTName String Ch R Aux Positioner Type Name 276
:ISELect 132 Ch RW Aux Input Select 277
:IO0Module
: INPut
: INDex 132 Ch RW Aux I/0 Module Input Index 278
[:VALue] # 132 Ch R Aux I/0 Module Input0 / Input1 282
Value
:DINVersion 132 Ch RW Aux Direction Inversion 280
: TRIGger

Continued on next page

MCS2 Programmer’s Guide m _

6 ASCII INTERFACE

Table 6.3 - Continued from previous page

= ScP Command Tree | Type | on | Access | properey | vage

:OUTPut
:MODE 132 Ch RW Channel Output Trigger Mode 297
:POLarity 132 Ch RW Channel Output Trigger Polarity 299
:PWIDth 132 Ch RW Channel Output Trigger Pulse 300
Width
:PCOMpare
:THReshold
[:STARt] 132 Ch RW Channel Position Compare Start 301
Threshold
: INCRement 132 Ch RW Channel Position Compare In- 302
crement
:DIRection 132 Ch RW Channel Position Compare Di- 303
rection
:LMIN 64 Ch RW Channel Position Compare Limit 305
Min
: LMAX 164 Ch RW Channel Position Compare Limit 307
Max
:TUNing
:MTYPe 132 Ch R(W) Positioner Movement Type 237
:CUSTom 132 Ch R(W) Positioner Is Custom Type 239
:BASE
:UNIT 132 Ch R(W) Positioner Base Unit 240
:RESolution 132 Ch R(W) Positioner Base Resolution 242
:HTYPe 132 Ch R(W) Positioner Sensor Head Type 244
:RTYPe 132 Ch R(W) Positioner Reference Type 245
:GAIN
:P 132 Ch R(W) Positioner P Gain 247
g It 132 Ch R(W) Positioner | Gain 248
:D 132 Ch R(W) Positioner D Gain 249
:SHIFt 132 Ch R(W) Positioner PID Shift 250
: AWINdup 132 Ch R(W) Positioner Anti Windup 252
: SAVE 132 Ch W Save Positioner Type 260
:WPRotection 132 Ch RW Positioner Write Protection 261
:ESDetection

Continued on next page

MCS2 Programmer’s Guide m _

6 ASCII INTERFACE

Table 6.3 - Continued from previous page

I K) R
132

:DISTance Positioner ESD Distance Thresh- 254
old

:COUNter 132 Ch R(W) Positioner ESD Counter Thresh- 256
old

:THReshold

:TREached 132 Ch R(W) Positioner = Target Reached 257
Threshold

: THOLA 132 Ch R(W) Positioner Target Hold Thresh- 258
old

6.7 SCPI Error Codes

Table 6.4 - SCPI Error Codes

Definition / Description

0 SCPI_ERROR_NO_ERROR
No error occurred. Corresponds to an acknowledge.

-101 SCPI_ERROR_INVALID_CHARACTER
The command message contained an invalid character.

-103 SCPI_ERROR_INVALID_SEPARATOR
The command message contained an invalid separator.

-104 SCPI_ERROR_DATA_TYPE_ERROR
The command message contained an illegal data type.

-108 SCPI_ERROR_PARAMETER_NOT_ALLOWED
The command message contained illegal parameter.

-109 SCPI_ERROR _MISSING_PARAMETER
The command message is missing a parameter.

-113 SCPI_ERROR_UNDEFINED_HEADER
The command message does not exist for this device.

-151 SCPI_ERROR_INVALID_STRING_DATA
The given string data is invalid.

-350 SCPI_ERROR_QUEUE_OVERFLOW
An internal error queue overflow occurred.

-363 SCPI_ERROR_INPUT_BUFFER_OVERRUN
An input buffer overrun occurred.

MCS2 Programmer’s Guide m _

A CODE DEFINITION REFERENCE

A.1 Error Codes

Table A.1 - Error Codes

C-Definition / Description

0x0000 SA_CTL_ERROR_NONE
No error occurred. Corresponds to an acknowledge.

0x0001 SA_CTL_ERROR_UNKNOWN_COMMAND
An unknown command opcode was received and the packet was dropped.

0x0002 SA_CTL_ERROR_INVALID_PACKET_SIZE
Indicates that the size field of a packet does not match the packet structure.

0x0004 SA_CTL_ERROR_TIMEOUT
A timeout occurred while receiving a complete packet.

0x0005 SA_CTL_ERROR_INVALID_ PROTOCOL
A packet was received that does not comply to a supported protocol.

0x000c SA_CTL_ERROR_BUFFER_UNDERFLOW
The targeted buffer is empty.

0x000d SA_CTL_ERROR_BUFFER_OVERFLOW
The targeted buffer is filled and has no more space for further data.

0x000e SA_CTL_ERROR_INVALID_ FRAME_SIZE
The frame size of the packet is invalid.

0x0010 SA_CTL_ERROR_INVALID_PACKET
A packet with an inconsistent structure was received.

0x0012 SA_CTL_ERROR_INVALID_KEY
The given property key could not be resolved.

0x0013 SA_CTL_ERROR_INVALID_ PARAMETER
The passed parameter is not in the valid range.

0x0016 SA_CTL_ERROR_INVALID_DATA_TYPE
Indicates that the data type of a parameter is invalid.

0x0017 SA_CTL_ERROR_INVALID_DATA
The command could not be processed due to invalid data. (E.g. a calibration routine
finished but could not generate valid data.)

Continued on next page

MCS2 Programmer’s Guide m _

A CODE DEFINITION REFERENCE

Table A.1 - Continued from previous page

C-Definition / Description

0x0018 SA_CTL_ERROR_HANDLE_LIMIT_ REACHED
The command could not be processed because all available handles are currently in
use.
0x0019 SA_CTL_ERROR_ABORTED
The command has been aborted.
0x0020 SA_CTL_ERROR_INVALID_DEVICE_INDEX
An invalid device index has been passed.

0x0021 SA_CTL_ERROR_INVALID_ MODULE_INDEX
An invalid module index has been passed.

0x0022 SA_CTL_ERROR_INVALID_CHANNEL_INDEX
An invalid channel index has been passed.

0x0023 SA_CTL_ERROR_PERMISSION_DENIED
The request cannot be processed due to an access violation.

0x0024 SA_CTL_ERROR_COMMAND_NOT_GROUPABLE
The given command cannot be part of a command group.

0x0025 SA_CTL_ERROR_MOVEMENT_LOCKED
The given command cannot be processed due to movements being locked.

0x0026 SA_CTL_ERROR_SYNC_FAILED
A synchronization requirement could not be met. (E.g. the trajectory streaming was
aborted due to a stream overload.)

0x0027 SA_CTL_ERROR_INVALID_ARRAY SIZE
The number of array elements is invalid for a given write array property command.

0x0028 SA_CTL_ERROR_OVERRANGE
An over-range condition occurred.

0x0029 SA_CTL_ERROR_INVALID_CONFIGURATION
The operation could not be started due to an invalid configuration of the component.
(E.g. some other properties are not configured properly for the configured operation
mode.)

0x0100 SA_CTL_ERROR_NO_HM_ PRESENT
The command could not be processed because no Hand-Control-Module is present.

0x0101 SA_CTL_ERROR_NO_IOM_PRESENT
The command could not be processed because no I/0-Module is present.

0x0102 SA_CTL_ERROR_NO_SM PRESENT
The command could not be processed because no Sensor-Module is present.

0x0103 SA_CTL_ERROR_NO_SENSOR_PRESENT
The command could not be processed because no sensor is present.

0x0104 SA_CTL_ERROR_SENSOR_DISABLED
The command could not be processed because the sensor is disabled.

Continued on next page

MCS2 Programmer’s Guide m _

A CODE DEFINITION REFERENCE

Table A.1 - Continued from previous page

C-Definition / Description

0x0105 SA_CTL_ERROR_POWER_SUPPLY DISABLED
The command could not be processed because the power supply is disabled.

0x0106 SA_CTL_ERROR_AMPLIFIER _DISABLED
The command could not be processed because the amplifier is disabled.

0x0107 SA_CTL_ERROR_INVALID_SENSOR_MODE
The command could not be processed with the current sensor mode setting. (E.g.
the power save mode is not allowed while trajectory streaming.)

0x0108 SA_CTL_ERROR_INVALID_ACTUATOR_MODE
The command could not be processed with the current Actuator Mode setting.

0x0109 SA_CTL_ERROR_INVALID_INPUT_TRIG_MODE
The command could not be processed with the current Device Input Trigger Mode
setting.

0x010a SA_CTL_ERROR_INVALID_CONTROL_OPTIONS
The command could not be processed with the current control options setting.

0x010b SA_CTL_ERROR_INVALID_REFERENCE_TYPE
The command could not be processed with the current reference type of the posi-
tioner.

0x010c SA_CTL_ERROR_INVALID_ ADJUSTMENT_STATE
The command could not be processed with the current adjustment state.

0x010e SA_CTL_ERROR_NO_FULL_ACCESS
The command could not be processed because the MCS2 has not full access connec-
tion to a connected Picoscale sensor.

0x010f SA_CTL_ERROR_ADJUSTMENT_FAILED
An adjustment sequence failed.

0x0110 SA_CTL_ERROR_MOVEMENT_OVERRIDDEN
A software commands a movement which is then interrupted by the Hand Control
Module before it finished or vice versa.

0x0111 SA_CTL_ERROR_NOT_CALIBRATED
The command could not be processed because the channel is not calibrated. See
section 2.7.1 "Calibrating" for more information.

0x0112 SA_CTL_ERROR_NOT_REFERENCED
The command could not be processed because the channel is not referenced.

0x0113 SA_CTL_ERROR_NOT_ADJUSTED
The command could not be processed because the channel is not adjusted.

0x0114 SA_CTL_ERROR_SENSOR_TYPE_NOT_SUPPORTED
The command could not be processed because the sensor type of the configured
positioner is not supported from the hardware (e.g. from the sensor module).

Continued on next page

MCS2 Programmer’s Guide m _

A CODE DEFINITION REFERENCE

Table A.1 - Continued from previous page

C-Definition / Description

0x0115 SA_CTL_ERROR_CONTROL_LOOP_INPUT_DISABLED
The command could not be processed because the control-loop input is disabled.
(See Control Loop Input property.)

0x0116 SA_CTL_ERROR_INVALID_ CONTROL_LOOP_INPUT
The command could not be processed because the control-loop input is invalid for
the command. (E.g. the calibration and referencing movements cannot be started
when the control-loop input is configured to ‘aux in’.)

0x0117 SA_CTL_ERROR_UNEXPECTED_SENSOR_DATA
The calibration routine could not be processed due to unexpected data from the
position sensor.

0x0118 SA_CTL_ERROR_NOT_PHASED
The command could not be processed because the channel is not phased. See sec-
tion 2.22 "Phasing of Magnetic Driven Positioners" for more information.

0x0119 SA_CTL_ERROR_POSITIONER_FAULT
The command could not be processed because the channel detected a positioner
fault.

0x01lb SA_CTL_ERROR_POSITIONER_TYPE_NOT_SUPPORTED
The command could not be processed because the connected positioner type is not
supported by the channel. Contact SmarAct to get a firmware update for your con-
troller.

0x01lc SA_CTL_ERROR_POSITIONER_TYPE_NOT_IDENTIFIED
The command could not be processed because the type of the connected positioner
could not be identified.

0x0lle SA_CTL_ERROR_POSITIONER_TYPE_NOT_WRITEABLE
The positioner type can not be set manually but is automatically configured by the
positioner ID system. See section 2.6 "Positioner Types" for more information.

0x0121 SA_CTL_ERROR_INVALID_ACTUATOR_TYPE
The command could not be processed with the current actuator type. (E.g. the tra-
jectory streaming is not supported for dual-piezo hybrid positioners.)

0x0150 SA_CTL_ERROR_BUSY_MOVING
The command could not be processed because the channel is currently busy per-
forming a movement command. (E.g. disabling the velocity control while moving is
not permitted.)

0x0151 SA_CTL_ERROR_BUSY_CALIBRATING
The command could not be processed because the channel is currently busy per-
forming a calibration sequence.

0x0152 SA_CTL_ERROR_BUSY_REFERENCING
The command could not be processed because the channel is currently busy per-
forming a referencing sequence.

Continued on next page

MCS2 Programmer’s Guide m _

A CODE DEFINITION REFERENCE

Table A.1 - Continued from previous page

C-Definition / Description

0x0153 SA_CTL_ERROR_BUSY_ADJUSTING
The command could not be processed because the channel is currently busy per-
forming an adjustment sequence.

0x0200 SA_CTL_ERROR_END_STOP_REACHED
An endstop was detected.

0x0201 SA_CTL_ERROR_FOLLOWING_ERR_LIMIT
The following error exceeded the configured limit.

0x0202 SA_CTL_ERROR_RANGE_LIMIT_REACHED
A configured position limit was hit.

0x0203 SA_CTL_ERROR_POSITIONER_OVERLOAD
The command could not be processed because the channel detected an overload
condition of the positioner. See section 2.9.1 "Movement Monitoring" for more in-
formation.

0x0300 SA_CTL_ERROR_INVALID_STREAM_ HANDLE
The given stream handle is invalid.

0x0301 SA_CTL_ERROR_INVALID_STREAM CONFIGURATION
The configured streaming parameters are not supported by all modules.

0x0302 SA_CTL_ERROR_INSUFFICIENT_FRAMES
This error is generated if the trajectory streaming was started without providing the
minimum amount of frames.
(A trajectory stream must consist of at least two frames.)

0x0303 SA_CTL_ERROR_BUSY_STREAMING
The command could not be processed because the channel is currently participating
in a trajectory stream.

0x0400 SA_CTL_ERROR_HM_ INVALID_SLOT_INDEX
An invalid slot index has been passed to the hand control module.

0x0401 SA_CTL_ERROR_HM INVALID_CHANNEL_INDEX
An invalid channel index has been passed to the hand control module.

0x0402 SA_CTL_ERROR_HM INVALID_GROUP_INDEX
An invalid group index has been passed to the hand control module.

0x0403 SA_CTL_ERROR_HM_ INVALID_CH_GRP_INDEX
An invalid channel group index has been passed to the hand control module.

0x0500 SA_CTL_ERROR_INTERNAL_COMMUNICATION
An internal communication error occurred. This error usually indicates a hardware
malfunction.

0x7ffd SA_CTL_ERROR_FEATURE_NOT_SUPPORTED
Indicates that a requested feature is not available on the connected device.

Continued on next page

MCS2 Programmer’s Guide m _

A CODE DEFINITION REFERENCE

Table A.1 - Continued from previous page

C-Definition / Description

Ox7ffe SA_CTL_ERROR_FEATURE_NOT_IMPLEMENTED
Indicates that a feature is not yet implemented. The device may have to be update
to a newer version.

0xf000 SA_CTL_ERROR_DEVICE_LIMIT_REACHED
The maximum number of devices has been opened.

0xf001 SA_CTL_ERROR_INVALID_LOCATOR
An invalid locator string has been passed.

0xf002 SA_CTL_ERROR_INITIALIZATION_FAILED
Initialization of the desired device failed.

0xf003 SA_CTL_ERROR_NOT_ INITIALIZED
The device has not been initialized yet.

0xf004 SA_CTL_ERROR_COMMUNICATION_FAILED
Communication with the device failed.

0xf006 SA_CTL_ERROR_INVALID_ QUERYBUFFER_ SIZE
The provided array size does not meet the required size.

0xf007 SA_CTL_ERROR_INVALID DEVICE_HANDLE
An invalid device handle has been passed.

0xf008 SA_CTL_ERROR_INVALID_TRANSMIT_HANDLE
An invalid transmit handle has been passed.

0xf00f SA_CTL_ERROR_UNEXPECTED_PACKET_RECEIVED
An unexpected packet has been received.

0xf010 SA CTL_ERROR_CANCELED
The function call has been canceled.

0xf013 SA_CTL_ERROR_DRIVER_FAILED
The device could not be found due to a driver failure.

0xf016 SA_ CTL_ERROR_BUFFER_LIMIT REACHED
The limit of available buffers has been reached.

0xf017 SA_CTL_ERROR_INVALID_PROTOCOL_VERSION
A protocol version mismatch has been detected.
0xf018 SA_CTL_ERROR_DEVICE_RESET_FAILED
The device software reset failed.
0xf019 SA_CTL_ERROR_BUFFER_EMPTY
Action is not allowed with empty buffers (e.g. empty command group buffer).

0xf0la SA_CTL_ERROR_DEVICE_NOT_FOUND
The device specified in the locator could not be found.

0xf0lb SA_CTL_ERROR_THREAD LIMIT REACHED
The maximum number of simultaneous calls for this function was reached.

Continued on next page

MCS2 Programmer’s Guide m _

A CODE DEFINITION REFERENCE

Table A.1 - Continued from previous page

C-Definition / Description

O0xf0lc SA_CTL_ERROR_NO_APPLICATION
The device specified in the locator is not in the application state.

MCS2 Programmer’s Guide 357 _

Sales partner / Contacts

Germany

SmarAct GmbH

Schuette-Lanz-Strasse 9
26135 Oldenburg
Germany

T: +49 441 - 8008790
Email: info-de@smaract.com
www.smaract.com

China

Dynasense Photonics
6 Taiping Street

Xi Cheng District,
Beijing, China

T:+86 10 - 835038 53
Email: info@dyna-sense.com
www.dyna-sense.com

Japan

Physix Technology Inc.
Ichikawa-Business-Plaza
4-2-5 Minami-yawata,
Ichikawa-shi

272-0023 Chiba

Japan

T/F: +81 47 - 370 86 00
Email: info-jp@smaract.com
www.physix-tech.com

France

SmarAct GmbH

Schuette-Lanz-Strasse 9
26135 Oldenburg
Germany

T: +49 441 - 800 879 956
Email: info-fr@smaract.com
www.smaract.com

Natsu Precision Tech

Room 515, Floor 5, Building 7,
No.18 East Qinghe Anning
Zhuang Road,

Haidian District

Beijing, China

T:+86 18 -616 715 058
Email: chenye@nano-stage.com
www.nano-stage.com

South Korea

SEUM Tronics

801, 1, Gasan digital 1-ro
Geumcheon-gu

Seoul, 08594,

Korea

T:+822-8681002
Email: info-kr@smaract.com
www.seumtronics.com

USA

SmarAct Inc.

2140 Shattuck Ave. Suite 1103
Berkeley, CA 94704

United States of America

T:+1 415 -766 9006
Email: info-us@smaract.com
www.smaract.com

Shanghai Kingway Optech Co.Ltd
Room 1212, T1 Building
Zhonggeng Global Creative Center
Lane 166, Yuhong Road
Minhang District

Shanghai, China

Tel: +86 21 - 548 469 66
Email: sales@kingway-optech.com
www.kingway-optech.com

Israel

Trico Israel Ltd.

P.O.Box 6172
46150 Herzeliya
Israel

T:+9729-95060 74
Email: info-il@smaract.com
www.trico.co.il

MCS2 Programmer’s Guide m _

	1 Introduction
	1.1 Terminologies

	2 General Concepts
	2.1 Connecting and Disconnecting
	2.1.1 Locators for Device Identification
	2.1.2 Finding Devices
	2.1.3 Device Enumeration Options
	2.1.4 Network Interface Configuration

	2.2 Properties
	2.3 Accessing Properties
	2.3.1 Synchronous Access
	2.3.2 Asynchronous Access
	2.3.3 High-Throughput Asynchronous Access
	2.3.4 Call-and-Forget Mechanism
	2.3.5 Request Ready Notification

	2.4 Event Notifications
	2.5 Module Overview
	2.5.1 USB Interface
	2.5.2 Ethernet Interface
	2.5.3 Stick-Slip Piezo Driver
	2.5.4 Magnetic Driver

	2.6 Positioner Types
	2.6.1 Manual Positioner Type Configuration
	2.6.2 Automatic Positioner Type Configuration
	2.6.3 Custom Positioner Types

	2.7 Moving Positioners
	2.7.1 Calibrating
	2.7.2 Referencing
	2.7.3 Open-Loop Movements
	2.7.4 Closed-Loop Movements
	2.7.5 Stopping Movements
	2.7.6 Overwriting Movement Commands
	2.7.7 Movement Feedback

	2.8 Defining Positions
	2.8.1 Reference Marks
	2.8.2 Positioners With Single Reference Marks
	2.8.3 Positioners With Multiple Reference Marks
	2.8.4 Positioners With Endstop Reference
	2.8.5 Shifting the Measuring Scale

	2.9 Device Monitoring
	2.9.1 Movement Monitoring
	2.9.2 Magnetic Driver Overload Protection
	2.9.3 Hardware Monitoring

	2.10 State Flags
	2.10.1 Device State Flags
	2.10.2 Module State Flags
	2.10.3 Channel State Flags

	2.11 Sensor Power Modes
	2.12 PicoScale Sensor Module
	2.13 Endstop Detection
	2.14 Following Error Detection
	2.15 Software Range Limit
	2.16 Stop Broadcasting
	2.16.1 Stop Broadcast Configuration

	2.17 Command Groups
	2.17.1 Command Groups vs. Output Buffer

	2.18 Trajectory Streaming
	2.18.1 General Streaming Concept
	2.18.2 Basic Approach
	2.18.3 Options
	2.18.4 Trigger Modes
	2.18.5 Stream Events
	2.18.6 Maximum Stream Rates

	2.19 Auxiliary Inputs and Outputs
	2.19.1 Digital Device Input
	2.19.2 Fast Digital Outputs
	2.19.3 General Purpose Digital Inputs/Outputs
	2.19.4 Fast Analog Inputs
	2.19.5 Using Analog Inputs as Control-Loop Feedback
	2.19.6 Analog Outputs

	2.20 Input Trigger
	2.20.1 Disabled Mode
	2.20.2 Emergency Stop Mode
	2.20.3 Stream Sync Mode
	2.20.4 Command Group Sync Mode
	2.20.5 Event Trigger Mode

	2.21 Output Trigger
	2.21.1 Constant Mode
	2.21.2 Position Compare Mode
	2.21.3 Target Reached Mode
	2.21.4 Actively Moving Mode

	2.22 Phasing of Magnetic Driven Positioners
	2.23 Feature Permissions

	3 Function Reference
	3.1 Function Summary
	3.2 Detailed Function Description
	3.2.1 SA_CTL_GetFullVersionString
	3.2.2 SA_CTL_GetResultInfo
	3.2.3 SA_CTL_GetEventInfo
	3.2.4 SA_CTL_FindDevices
	3.2.5 SA_CTL_Open
	3.2.6 SA_CTL_Close
	3.2.7 SA_CTL_Cancel
	3.2.8 SA_CTL_GetProperty_i32
	3.2.9 SA_CTL_SetProperty_i32
	3.2.10 SA_CTL_SetPropertyArray_i32
	3.2.11 SA_CTL_GetProperty_i64
	3.2.12 SA_CTL_SetProperty_i64
	3.2.13 SA_CTL_SetPropertyArray_i64
	3.2.14 SA_CTL_GetProperty_s
	3.2.15 SA_CTL_SetProperty_s
	3.2.16 SA_CTL_RequestReadProperty
	3.2.17 SA_CTL_ReadProperty_i32
	3.2.18 SA_CTL_ReadProperty_i64
	3.2.19 SA_CTL_ReadProperty_s
	3.2.20 SA_CTL_RequestWriteProperty_i32
	3.2.21 SA_CTL_RequestWriteProperty_i64
	3.2.22 SA_CTL_RequestWriteProperty_s
	3.2.23 SA_CTL_RequestWritePropertyArray_i32
	3.2.24 SA_CTL_RequestWritePropertyArray_i64
	3.2.25 SA_CTL_WaitForWrite
	3.2.26 SA_CTL_CancelRequest
	3.2.27 SA_CTL_CreateOutputBuffer
	3.2.28 SA_CTL_FlushOutputBuffer
	3.2.29 SA_CTL_CancelOutputBuffer
	3.2.30 SA_CTL_OpenCommandGroup
	3.2.31 SA_CTL_CloseCommandGroup
	3.2.32 SA_CTL_CancelCommandGroup
	3.2.33 SA_CTL_WaitForEvent
	3.2.34 SA_CTL_Calibrate
	3.2.35 SA_CTL_Reference
	3.2.36 SA_CTL_Move
	3.2.37 SA_CTL_Stop
	3.2.38 SA_CTL_OpenStream
	3.2.39 SA_CTL_StreamFrame
	3.2.40 SA_CTL_CloseStream
	3.2.41 SA_CTL_AbortStream

	4 Property Reference
	4.1 Property Introduction
	4.2 Property Summary
	4.3 Device Properties
	4.3.1 Number of Channels
	4.3.2 Number of Bus Modules
	4.3.3 Interface Type
	4.3.4 Device State
	4.3.5 Device Serial Number
	4.3.6 Device Name
	4.3.7 Emergency Stop Mode
	4.3.8 Network Discover Mode
	4.3.9 Network DHCP Timeout

	4.4 Module Properties
	4.4.1 Power Supply Enabled
	4.4.2 Number of Bus Module Channels
	4.4.3 Module Type
	4.4.4 Module State

	4.5 Positioner Properties
	4.5.1 Startup Options
	4.5.2 Amplifier Enabled
	4.5.3 Amplifier Mode
	4.5.4 Positioner Control Options
	4.5.5 Actuator Mode
	4.5.6 Control Loop Input
	4.5.7 Sensor Input Select
	4.5.8 Positioner Type
	4.5.9 Positioner Type Name
	4.5.10 Move Mode
	4.5.11 Channel Type
	4.5.12 Channel State
	4.5.13 Position
	4.5.14 Target Position
	4.5.15 Scan Position
	4.5.16 Scan Velocity
	4.5.17 Hold Time
	4.5.18 Move Velocity
	4.5.19 Move Acceleration
	4.5.20 Max Closed Loop Frequency
	4.5.21 Default Max Closed Loop Frequency
	4.5.22 Step Frequency
	4.5.23 Step Amplitude
	4.5.24 Following Error
	4.5.25 Following Error Limit
	4.5.26 Broadcast Stop Options
	4.5.27 Sensor Power Mode
	4.5.28 Sensor Power Save Delay
	4.5.29 Position Mean Shift
	4.5.30 Safe Direction
	4.5.31 Control Loop Input Sensor Value
	4.5.32 Control Loop Input Aux Value
	4.5.33 Target To Zero Voltage Hold Threshold

	4.6 Scale Properties
	4.6.1 Logical Scale Offset
	4.6.2 Logical Scale Inversion
	4.6.3 Range Limit Min
	4.6.4 Range Limit Max
	4.6.5 Default Range Limit Min
	4.6.6 Default Range Limit Max

	4.7 Calibration Properties
	4.7.1 Calibration Options
	4.7.2 Signal Correction Options

	4.8 Referencing Properties
	4.8.1 Referencing Options
	4.8.2 Distance To Reference Mark
	4.8.3 Distance Code Inverted

	4.9 Tuning and Customizing Properties
	4.9.1 Positioner Movement Type
	4.9.2 Positioner Is Custom Type
	4.9.3 Positioner Base Unit
	4.9.4 Positioner Base Resolution
	4.9.5 Positioner Sensor Head Type
	4.9.6 Positioner Reference Type
	4.9.7 Positioner P Gain
	4.9.8 Positioner I Gain
	4.9.9 Positioner D Gain
	4.9.10 Positioner PID Shift
	4.9.11 Positioner Anti Windup
	4.9.12 Positioner ESD Distance Threshold
	4.9.13 Positioner ESD Counter Threshold
	4.9.14 Positioner Target Reached Threshold
	4.9.15 Positioner Target Hold Threshold
	4.9.16 Save Positioner Type
	4.9.17 Positioner Write Protection

	4.10 Streaming Properties
	4.10.1 Stream Base Rate
	4.10.2 Stream External Sync Rate
	4.10.3 Stream Options
	4.10.4 Stream Load Maximum

	4.11 Diagnostic Properties
	4.11.1 Channel Error
	4.11.2 Channel Temperature
	4.11.3 Bus Module Temperature
	4.11.4 Positioner Fault Reason
	4.11.5 Motor Load

	4.12 Auxiliary Properties
	4.12.1 Aux Positioner Type
	4.12.2 Aux Positioner Type Name
	4.12.3 Aux Input Select
	4.12.4 Aux I/O Module Input Index
	4.12.5 Aux Direction Inversion
	4.12.6 Aux I/O Module Input0 / Input1 Value
	4.12.7 Aux Digital Input Value
	4.12.8 Aux Digital Output Value / Set / Clear
	4.12.9 Aux Analog Output Value0 / Value1

	4.13 I/O Module Properties
	4.13.1 I/O Module Options
	4.13.2 I/O Module Voltage
	4.13.3 I/O Module Analog Input Range

	4.14 Input Trigger Properties
	4.14.1 Device Input Trigger Mode
	4.14.2 Device Input Trigger Condition

	4.15 Output Trigger Properties
	4.15.1 Channel Output Trigger Mode
	4.15.2 Channel Output Trigger Polarity
	4.15.3 Channel Output Trigger Pulse Width
	4.15.4 Channel Position Compare Start Threshold
	4.15.5 Channel Position Compare Increment
	4.15.6 Channel Position Compare Direction
	4.15.7 Channel Position Compare Limit Min
	4.15.8 Channel Position Compare Limit Max

	4.16 Hand Control Module Properties
	4.16.1 Hand Control Module Lock Options
	4.16.2 Hand Control Module Default Lock Options

	4.17 API Properties
	4.17.1 Event Notification Options
	4.17.2 Auto Reconnect

	5 Event Reference
	5.1 Event Summary
	5.2 Detailed Event Description
	5.2.1 None
	5.2.2 Movement Finished
	5.2.3 Holding Aborted
	5.2.4 Positioner Type Changed
	5.2.5 Phasing Finished
	5.2.6 Sensor State Changed
	5.2.7 Reference Found
	5.2.8 Following Error Limit
	5.2.9 Sensor Module State Changed
	5.2.10 Over Temperature
	5.2.11 Power Supply Overload
	5.2.12 Power Supply Failure
	5.2.13 Fan Failure State Changed
	5.2.14 Adjustment Finished
	5.2.15 Adjustment State Changed
	5.2.16 Adjustment Update
	5.2.17 Stream Finished
	5.2.18 Stream Ready
	5.2.19 Stream Triggered
	5.2.20 Command Group Triggered
	5.2.21 Hand Control Module State Changed
	5.2.22 Emergency Stop Triggered
	5.2.23 External Input Triggered
	5.2.24 Request Ready
	5.2.25 Connection Lost

	6 ASCII Interface
	6.1 Connection Setup
	6.1.1 Note On Message Termination

	6.2 SCPI Basics
	6.2.1 SCPI Conformance Information
	6.2.2 Command Structure
	6.2.3 Traversing the Command Tree
	6.2.4 Queries

	6.3 Basic Programming Examples
	6.3.1 Get Property
	6.3.2 Set Property
	6.3.3 Calibrate
	6.3.4 Reference
	6.3.5 Move
	6.3.6 Stop
	6.3.7 Movement State
	6.3.8 Error Handling

	6.4 Using Command Groups
	6.4.1 Command Set
	6.4.2 Examples

	6.5 Streaming Trajectories
	6.5.1 Command Set
	6.5.2 Example

	6.6 Command Summary
	6.6.1 Common Commands
	6.6.2 Movement Commands
	6.6.3 Property Command Tree

	6.7 SCPI Error Codes

	A Code Definition Reference
	A.1 Error Codes

